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PREFACE

The monograph addresses research mathematicians and graduate students
interested in the module and representation theory of arbitary rings. It is primarily
concerned with generalizations of injectivity and projectivity, and simultaneously with
modules displaying good direct decomposition properties. Specifically, we study two
classes of modules, named continuous and discrete. Both exhibit, in a dual sense, a
generous supply of direct summands. The first class contains all injective modules,
while the second one contains those projective modules which have a "good" direct
sum decomposition.

Continuous, as the term is used here, is not related to continuity in the sense of
topology and analysis. It is rather derived from the notion of a continuum. This
usage originated with von Neumann’s continuous geometries. These are analogues of
projective geometries, except that they have no points, but instead a dimension
function whose range is a continuum of real numbers. Just as most projective
geometries can be coordinatized by simple artinian rings, most continuous geometries
are coordinatized by non—noetherian continuous regular rings.

Utumi observed that continuous regular rings generalize self-injective regular
rings. He extended the concept to arbitrary rings. Jeremy, Mohamed and Bouhy,
and Goel and Jain generalized these ideas to modules.

The weaker notion of quasi—continuity appears now to be more fundamental. It
asserts directly that the module inherits all direct sum decompositions from its
injective hull (2.8). The important Theorem (2.31) ensures that uniqueness properties
are inherited as well.

Another central result for quasi—continuous modules, (2.37), establishes a
decomposition into a quasi-injective and a square—free part. This is a rare instance of
a direct decomposition where both summands have, in different ways, better
properties than the original module. It allows us to prove the exchange property for
continuous modules (3.24), and the cancellation property for directly finite continuous
modules (3.25).

Arbitrary families of orthogonal idempotents, of the endomorphism ring of a
quasi—continuous module, lift modulo the ideal of endomorphisms with essential kernel
(3.9). The endomorphism ring of a quasi—continuous module retains all the properties
familiar from quasi-injective modules precisely if the module is actually continuous
(3.15).



The dichotomy between projective and continuous geometries, namely that their
dimension functions have discrete respectively continuum range, remains in effect for
injective modules (cf. Goodearl and Boyle [76]; replace the dimension function by the
finite rank function), and consequently for quasi—continuous modules. Noetherian
rings are exactly the ones for which every injective or every quasi—continuous module
is a direct sum of indecomposables. On the other hand, over "arbitrary" rings, the
continuous structure is typical: an infinite direct sum of indecomposable
(quasi—)continuous modules is (quasi—)continuous only in the presence of an ascending
chain condition (2.13/3.16). A quasi—continuous module decomposes into
indecomposables only in the presence of strong additional properties (2.22).

Concepts dual to those of (quasi—)continuity have been studied, under various
names (notably (quasi—semi—)perfect, (quasi—)dual continuous, stark supplementiert),
by many authors. The usage of terminology is disturbingly inconsistent. We propose
the new term "(quasi-)discrete", motivated by Oshiro’s Theorem (4.15) that every
such module is the direct sum of indecomposables.

This decomposition, which has strong uniqueness properties, reduces some proofs
to counting arguments. Exchange and cancellation property, in particular, follow
quite easily (4.19/20).  Arbitrary families of orthogonal idempotents, of the
endomorphism ring of a quasi—discrete module, lift modulo the ideal of endomorphisms
with small image (5.9). Again, a quasi-discrete module is discrete precisely if the
endomorphism ring exhibits all the familiar properties (5.4).

The converse question, when a direct sum of indecomposable quasi—discrete
modules is quasi—discrete, has not yet received a fully satisfactory answer
(cf. (4.48/49). The special cases of a finite direct sum (4.50), and a direct sum of
local modules (4.53), are settled. For discrete modules over commutative noetherian
rings, the complete answer is known (5.15/16), and requires elaborate arguments.

In spite of the dual nature of their definitions, and some analogies on an
elementary level, (quasi—)continuous and (quasi-)discrete modules display striking
dissimilarities as well:  Continuity generalizes injectivity. = The structure of
quasi—continuous modules resembles that of their injective hulls. Al
injective/quasi—continuous modules are direct sums of indecomposables if and only if
the ring is noetherian. A direct sum of quasi—continuous modules with full relative
injectivity is quasi—continuous. On the other hand: Quasi—discrete modules are always
direct sums of indecomposables. Discreteness generalizes projectivity if and only if the



ring is perfect. A direct sum of quasi—discrete modules with full relative projectivity
need not be quasi—discrete.

These dissimiliarities can be traced to the fact that every module is
complemented, and hence possesses an injective hull, while most modules are not
supplemented (4.41), and have no projective cover. Modules which are just
supplemented, have interesting properties of their own, and were studied by many
people (cf. Appendix, Section 1 and 2). Quasi—discrete modules are supplemented
(4.8), and thus constitute a much more restrictive class than quasi—continuous ones.

Chapter 1 is of preliminary nature. It summarizes facts about relative
injectivity, and proves the exchange and cancellation properties for injective modules.
It also develops a general technique for constructing direct sum decompositions, and
derives the decomposition of an injective module into a directly finite and a purely
infinite part. Analogous results on relative projectivity are collected at the beginning
of Section 4 of Chapter 4. More details concerning the arrangement of the material
may be obtained from the table of content.

We have attempted to provide a complete and up to date account of the
subject. The exposition is self contained, except that a few well known and highly
technical results which are readily accessible in the literature, are quoted without
proof. All undefined concepts can be found in Anderson and Fuller [73]. In the
comments at the end of each chapter, we try to trace the origin of some of the main
ideas. Section 6 of the Appendix lists a number of open questions.
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CHAPTER 1
INJECTIVITY AND RELATED CONCEPTS

In this chapter we discuss injectivity, quasi-injectivity and relative injectivity,
with emphasis on those properties which are used later on in the book. We start by
listing some of the well known fundamental properties of injective modules which can
be found in Anderson and Fuller [73] or Sharpe and Vamos [72].

A module E is injective if it satisfies any of the equivalent conditions:

(1) For every module A and any submodule X of A every homomorphism X —> E

can be extended to a homomorphism A —> E;

(2) (Baer’s Criterion) Every homomorphism of a right ideal I of R to E can be

extended to a homomorphism of R to E;

(3) For any module M every monomorphism E >—> M splits;
(4) E has no proper essential extensions.

Every module M has a minimal injective extension, which is at the same time a
maximal essential extension of M; such an extension is unique up to isomorphism and
is called the injective hull of M. The injective hull of M will be denoted by E(M).

1. A-INJECTIVE MODULES
Definition_1.1. Let A be an R-module. A

module N is said to be A—injective if for every X5y>——>A
submodule X of A, any homomorphism v 4
g X—> N can be extended to a b // Y
homomorphism % : A —> N. 4 %/

The following is an immediate consequence.

Lemma 1.2. If N is A—injective, then any monomorphism N >—f—> A splits. If, in
addition, A is indecomposable, then f is an isomorphism. o

Proposition 1.3. Let N be an A—injective module. If B < A, then N is B—injective
and A/B—injective.



PROOF. It is obvious that N is B-injective. X 5 A
Let X/B be a submodule of A/B, and /
¢:X/B—> N be a homomorphism. Let 7 ' // p
denote the natural homomorphism of A onto . /
A/B and 7 = 7|y. Since N is A-injective, X/B }——/——-)’A/B
there exists a homomorphism § : A —> N that /. 4
extends pr’. Now | ©& ¥

B = pr'B = ¢(0) = 0. ///
Hence Ker 7 < Ker 6, and consequently there \N(

exists 9 : A/B —> N such that ¢y = 0. For every xeX

Y(x + B) = ¢(x) = fx) = ¢r(x) = ¢(x + B).
Thus 9 extends ¢, and therefore N is A/B injective. o

The following proposition may be viewed as a generalization of Baer’s Criterion.

Proposition 1.4. A module N is A—injective if and only if N is aR —injective for every
a€A.
PROOF. The "only if" part follows by the preceding proposition.

Conversely, assume that N is aR-injective for every a€A. Let X < A and
¢: X —> N be a homomorphism. By Zorn’s Lemma, we can find a pair (B, 9)
maximal with the properties X < B < A and ¢: B—> N is a homomorphism which

extends ¢. It is clear that B ¢ A Suppose that B # A and consider an element
a€A — B. Let K = {reR : areB}; then it is clear that aK # 0. Define p: aK —> N
by u(ak) = ¢(ak). Then by assumption 4 can be extended to v : aR —> N.

Now define x : B + aR —> N by x(b + ar) = 9(b) + v(ar). Then x is well
defined, since if b + ar = 0, then reK and so

Y(b) + (ar) = ¢%(b) + u(ar) = ¥(b) + y(ar) = ¢(b + ar) = 0.
But then the pair (B + aR, x) contradicts the maximality of (B, ). Hence B = A,
and ¥ : A —> N extends ¢. o

Proposition 1.5. A module N is ( @ Ai)—injective if and only if N is A, —injective for
i€l

every iel.

PROOF. Assume that N is Ai—injective for all iel. Let A = o Ai’ X < A and
i€l

consider a homomorphism ¢ : X —> N. We may assume, by Zorn’s Lemma, that ¢

cannot be extended to a homomorphism X’ —> N for any submodule X’ of A which

contains X properly. Then X ge A. We claim that X = A. Suppose not. Then there



exist jeI and a € Aj such that a ¢ X. Since N is Aj—injective, N is aR-injective by
Proposition 1.3. By an argument similar to that given in Proposition 1.4, we can
extended ¢ to a homomorphism ¢ : X + aR —> N, which contradicts the
maximality of ¢. This proves our claim, and hence N is A-injective.

The converse follows by Proposition 1.3. o

The same proof as for injective modules yields the following

Proposition 1.6. II M, is A —injective if and only if Ma is A —injective for every
a€h
acA. o

Next we investigate the A—injectivity of direct sums.

Theorem 1.7. The following are equivalent for a family of modules {Ma D a€A}

(1) e M _is A—injective
aeh @
(2) e M, is A —injective for every countable subset I C A;

1€
(3) M, is A—injective for every o€A, and for every choice of meM (ieN) for
i
® o, .0
distinct aiEA such that n m. > a for some a€A, the ascending sequence
i=1

n m(i) (nelN) becomes stationary.

»n
PROOF. (1) 2 (2) follows by Proposition 1.6.
(2) # (3): Proposition 1.6 implies that M  is a A-injective for every a€A. Consider

[ 1]
the element x = (m;) € II M. The mapping ¢: ar - xr is a well defined
i=1 1
[+ 1] (0] o _
homomorphism from aR to I M . LetI= U (0 m;), and let y denote the
i=1 1 n=1 id>n

(0] [+ 1]
restriction of ¢ to al. Then y is a homomorphism of al into @ Ma' Since o Ma
i=1 " i=1 i

[ 1]
is A-injective and hence aR~injective, p extends to ¢: aR —> Ma . Then
i=1 1
xI = Gal) = 9al) < Y(aR) = Ya)R ¢ © M,
ieF i
where F is a finite subset of N. Let F = {1,2,....k-1}. Then mJI = 0 for i > k and

henceI = n m(i). Therefore the sequence n m(i) (nel) becomes stationary.
>k i>n
(3) # (1): By way of contradiction, assume that @ M , is not A-injective. Then by
aeh



Proposition 1.4, e Ma is not aR—-injective aK)———SaR
aeh
for some a€A. Hence there exists a right ideal . //
K of R and a homomorphism f: aK —> e /
aeh oM g
M, such that f cannot be extended to aR. a /
Since © M_ is A-injective for all finite /
acF

subsets F ¢ A by Proposition 1.6, f(aK) { e TM
133 a

M , for any finite subset F ¢ A. However f can

be extended to g : aR —> I M _since II M is A-injective. Let m = g(a).
a€h acl

Then it is clear that a° < m®= n mg where m, is the a—component of
ach

me II M. Then Let S, = {a€A: m k# 0}, keK. Then S, is a finite subset of
aeh @ @

A for every keK. However I = U S, is not finite since mK = f(aK) { e M _for

keK X acF @
any finite subset F ¢ A. By induction we select elements k.eK (ieN) and indices ajeA
1
such that ajeSk and aj ¢ u Sk' Let m, denote the a;—component of m. Then
j i=1 ™

m

%< n m‘i) and the sequence N m(i) (neN) is strictly increasing, which is a
i=1 i>n

contraction to our assumption. Therefore Ma is A-injective. o

ach

Corollary 1.8. M. is A—injective if and only if M; is A —injective for every iel,

1 1

| 8

1

(o]

[
and for every choice mieMi such that n m; > a® for some a€A, the ascending

i=1

sequence N m(i) (neN) becomes stationary. o
i>n

Motivated by these results and later applications, we introduce the following
three chain conditions on a ring R relative to a given family of R-modules {M :a€A}:

(A;) For every choice of distinct o€l (ieN) and meM = the ascending sequence
1

n m‘i) (nelN) becomes stationary;
i>n
(A,) Fore every choice of xeM  (a€A) and miEMai for distinct a;€A (i€N) such that

m(i) > x°, the ascending sequence N m(i) (nelN) becomes stationary;
i>n



(Ag) For every choice of distinct ojeA (ieN) and meM , if the sequence m(i) is
1
ascending, then it becomes stationary.

It is clear that (A;) implies (A,) and (A,) implies (A,). No other implication
holds as we shall see by the end of this section.

The following is a consequence of Proposition 1.6 and Theorem 1.7.

Proposition 1.9. Let M = o Ma‘ Then M(A - @) is Ma—z’njective for every a€A if

aeh
and only if M _ is M ~injective for all a # e and (A,) holds.
a ‘B 2

By Proposition 1.6, a direct product of injective modules is injective, and hence
a finite direct sum of injective modules is injective. The following proposition, which
deals with injectivity of arbitrary direct sums, is an immediate consequence of
Theorem 1.7.

Proposition 1.10. ® M s injective if and only if each M , is injective and (Al)
a€h
holds. ]

Theorem 1.11. The direct sum of any family of A—injective modules is A —injective if
and only if every cyclic (or finitely generated) submodule of A is noetherian. In
particular, the direct sum of every family of injective R —modules is injective if and only
if R is right noetherian.

PROOF. Assume that aR is noetherian for every a€A, and consider a direct sum
M= o Ma of A-injective modules Ma’ Let B < aR and ¢: B —> M be a

aeh
homomorphism. Since B is finitely generated, ¢(B) < e M, for a finite subset
aeF
FcA. Then ¢ can be extended to $:aR —> @ Ma’ since © M _is
acF aeF

A-injective by Proposition 1.6. Hence the A-injectivity of M follows by Proposition
14.

Conversely, assume that the direct sum of any family of A-injective modules is
A-injective. Let a be an arbitrary element of A. We prove that aR is right
noetherian by showing that any ascending sequence

a°=B05B1gB25...
of right ideals of R is ultimately stationary. Let M, = E(R/B,), ieN. Since each M, is



8

trivially A-injective, @ Mi is A-injective by assumption. Consider the set of

i=

1]
elements {mi =1+ B;: ieN}. The A-injectivity of @ M, implies, by Corollary 1.8,

i=1
that the ascending sequence n m(i) (nel) becomes stationary. As m? = B, for every
i>n

iel,

Bn = m?l =n mo

i>n

Hence the sequence B, ¢ B, < ... becomes stationary, and consequently aR is
noetherian.

The last statement is obvious. o

We conclude this section by listing examples which seperate the ascending chain
conditions (A,), (A,) and (A,). Each of these examples is of the type @ M, with
iel
indecomposable injective M..

Examples 1.12. (1) Let R be any commutative domain, and let K be its quotient
field. If we take M; = K (ieN), then @ M, is injective, hence (A;) holds. However
ielN
R is not necessarily noetherian.
(2) LetR= 1 K., a product of fields; and M, = K;. Here ® M, is semisimple,
ieN ieN
hence it is obvious that (A,) holds. Since E(® M;) = T K, e M, is not
ielN iel ielN

injective, hence (A ;) does not hold.

(3) Let R be any (left and right) perfect ring such that E(RR) is projective but

E(RR) is not (for the existence of such a ring, see Miiller [68]). Let M be a direct

sum of countably many copies of E(RR). Then M is not quasi-injective by

(Yamagata [74], Lemma 3.1). Since E(Ry) is projective, it is a finite direct sum of

indecomposables; so M = o M, with each Mi indecomposable injective. That
ieN

® M, does not have (A,) follows by Proposition 1.9 (see also Proposition 1.18). -

ieN

Proposition 2.24 (see Definition 2.23).

(4) For an incidence where even (A,) fails, consider any local generalized

quasi-Frobenius ring, and let M, = R(ieN). Then ® M, has (Ag) if and only if it is
ielN

locally-semi-T-nilpotent (Proposition 2.24), consequently R is perfect and hence
quasi—Frobenius. An explicit example of a local generalized quasi—Frobenius ring

which is not quasi—Frobenius is R = ”p M C;, the split extension of the ring ”p of

p-adic integers by the Priifer group C‘I';.



2.  QUASIHINJECTIVE MODULES

A module Q is called quasi—injective if it is Q—injective. Quasi-injective modules
are closely related to their injective hulls. We investigate this relationship in a more
general setting.

Lemma 1.13. A module N 1is A -injective if and only if YA < N for every
¥ € Hom (E(A), E(N)).

PROOF. Since E(N) is injective, it is enough X——>A
to consider ¢ € Hom (A, E(N)). _ 7y
"If": Let X < A and ¢ : X —> N be a $ s/
homomorphism. Since E(N) is injective, ¢ can © </
be extended to ¥ : A —> E(N). By Y /vy
assumption A < N, and hence ¢y : A—> N /
extends ¢. Therefore N is A-injective. /
"Only if" : Let X = {acA : ¢(a)e N}. E(N)% X
Since N is A-injective, |y can be extended to
v: A —> N. We claim that N n (v— ¢)A X

= 0. Indeed, let neN and acA be such that
n = (v-1) (a). Then ¢(a) = y(a) — neN, and
consequently aeX. Then n= »(a) - ¢(a)

= 9(a) - 9(a) = 0.
— N
Therefore N n (v — 9)A = 0, and hence £(N)
(v—9)A = 0 as N <®* E(N). Hence yA = vA < N. )

Corollary 1.14. A module Q is quasi—injective if and only if IQ < Q for every
fe End E(Q). o

Corollary 1.15. FEvery module M has a minimal quasi—injective extension, which is
unique up to isomorphism.

PROOF. Let Q(M) = (End E(M))(M). Then it is obvious that Q(M) satisfies the
required conditions. o

Lemma 1.13 has also the following
Corollary 1.16. Let A and B be relatively ingective (i.e. A is B-injective and B is

A-injective). If E(A) ¥ E(B), then A & B; in fact any isomorphism E(A) —> E(B)
restricts to an isomorphism A —> B, in addition A and B are quasi—injective.



PROOF. Let g : E(A) —> E(B) be an isomorphism. Since B is A-injective,
gA < B by Lemma 1.13. Similarly g_lB < A. Hence

B = (gg ')B = g(g"'B) < gA ¢ B.
Consequently gA = B, and therefore g| A - A —> B s an isomorphism.
Since A is B-injective and B ~ A, A is A-injective, that is A is quasi-injective.
o
The following is an immediate consequence of Propositions 1.5 and 1.6.

Proposition 1.17. M1 ® M2 is quasi—injective if and only if Mi is Mj—z'njective
(i,j = 1,2). In particular, a summand of a quasi—injective module is quasi—injective.
o

Now consider an arbitrary direct sum M = e M . It is clear from the
aeh
preceding proposition that "Ma is M injective for all @, feA" is a necessary

condition for M to be quasi-injective. The following result (which is analogous to
Proposition 1.10) shows that this condition is also sufficient in the presence of
condition (A,).

Proposition 1.18. The following are equivalent for a direct sum decomposition of a

module M = o Ma:
ach
(1) M is quasi—injective;

(2) M , is quasi—injective and M(A - a) is M —injective for every a€A;
(3) M, isM ﬂ—z’njective for all o, feA and (A,) holds.

M, is quasi—injective if and only if M, s Mj—injective

PROOF. Using Propositions 1.9 and 1.17, the proof is straightforward. o
n
Corollary 1.19. e

1

(i, j = 1,2,...,n). M" s quasi—injective if and only if M is quasi—injective.

1

o

3. EXCHANGE AND CANCELLATION PROPERTIES

In this section, we prove that every (quasi-)injective module has the exchange
property, and an injective module has the cancellation property if and only if it is
directly finite. (The terms are defined below).



Definition 1.20. A module M is said to have the (finite) ezxchange property if for any

(finite) index set I, whenever M @ N = o A, for modules N and A;, then
i€l
MeN=Me (e B;) for submodules B; < A,.
i€l

It is fairly easy to show that the (finite) exchange property is inherited by
summands and finite direct sums (see Lemma 3.20).

Theorem 1.21. FEvery quasi—injective module M has the ezchange property.

PROOF. Let A=MeN = i:l Ai‘ Let X, = Ai N Nand X = i:l X,. By Zorn’s
Lemma, we can find B < A maximal with respect to the following properties:

(i) B= i:l B; with X, ¢B; < Ai’

(i) MnB=0.

We claim that A = M @ B. Our claim will hold if we show that M <®* & and
M ® X (where Y denotes the image of Y < A under the natural homomorphism

A —> A/B). We start by showing MnKj ¢ Kj for every jeI. Let D be an
arbitrary submodule of A i such that Bj < D. Then
B<D+B=Do(e B)
17)
Maximality of B then implies M n (D + B) # 0. SinceMnB=0,Mn (D + B) { B.
Hence

(MnKj) nD=MnD¢#0.
Hence M n Kj ¢ Kj for all jeI. Consequently

e (MnA)< o K. =&

jel F7 g
Therefore M <© &.

If M is injective, then M is also injective (since M = (M ® B)/B © M) and
M ® X follows trivially. For a quasi— injective module we have the following
additional argument: Let = be the projection M ® N —>> M. The restriction of 7
to A, has kernel X, and hence A./X, is isomorphic to a submodule of M. Since M is
M-injective, M is A,/X.—injective by Proposition 1.3. As A/X ¢ A;/X,, we get by
Proposition 1.5 that M is A/X-injective; hence M is A/B-injective by Proposition 1.3.
Since M » M, M is A-injective and therefore M ¢® & by Lemma 1.2. o

Definition 1.22. A module M is said to have the cancellation property if whenever
MeX~MeY,then X * Y. M is said to have the internal cancellation property if
whenever M = A1 ® B1 = A2 ® B2 with A1 v A2, then B1 v B2.
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Proposition 1.23. Let M be a module with the finite ezchange property. Then M has
the cancellation property if and only if M has the internal cancellation property.
PROOF. "Only if" : Let M = A; ® B, = A, @ By with A; ¥ A,. Then
MeB1=A2eB2e>B1gA1$B2$B1=MeB2.
Hence B; ¢ B, (This direction of the proof does not need the finite exchange
property on M).
"If": Let M® X = Ne Y with M ¥ N. By the finite exchange property we get
MeX =M®oN’ @Y’ such that N < Nand Y’ <Y. Then X ¥ N’ ® Y’. It is also

clear that N’ ¢® Nand Y’ ¢® Y; write N=N/®N"'"and Y =Y’ e Y". Then
MeN' oY =MeX=NeY=N'eoeN'eY &Y"

Hence M & N" @ Y", and therefore
N'eY'®*M~¥N=N"'e N,

Since M has the internal cancellation property, N & Y"; hence
XeNeoY' vY'eY’ =Y. o

Definition 1.24. A module D is called directly finite if D is not isomorphic to a proper
summand of itself.

It is clear that a summand of a directly finite module is again directly finite.

The following is a characterization of directly finite modules via their
endomorphism rings.

Proposition 1.25. A module D is directly finite if and only if fg = 1 implies that gf = 1
for all f, ge End M.
PROOF. Assume that fg = 1 for some f, g¢ End M. Then D = gD @ Kerf. Since
gD & D and D is directly finite, Kerf = 0. However f is onto, and therefore f is an
automorphism of D. Hence gf = 1.

Conversely, assume the condition and le¢ D = B @ C with B D. Let

* _ *
¢ : D —> B be an isomorphism. Define ¢ as ¢ 1 on B and OonC. Then p p=1

* *
and hence ¢ ¢ = 1. It then follows that ¢ is a monomorphism and hence C = 0.
o

Lemma 1.26. If M is not directly finite, then X(m) embeds in M for some non—zero
module X.
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PROOF. Since M is not directly finite, M = A ® X with A ¥ M and X # 0. Then
A= A1 ® X, with A1 ~ A and X, ¢ X. Iterating this process we get
A=AneXne...e>X2e>X1

(]
with X, ¢ X (neN). Hence M contains the infinite direct sum X, with X, ¢ X.
i=1
o

For injective modules, we show that this condition is also sufficient.

Proposition 1.27. An injective module M 1is not directly finite if and only if X(m)
embeds in M for some non—zero module X.
PROOF. In view of Lemma 1.26, we need only prove the "if" part. Assume that

m m
M>K= o Xi withXigXandX#O. Let K1 =X1 and K = o Xi' Then

i=1 i=2
K=K;e® K2 with Ky2 K. Consequently
Hence E(K) is not directly finite. Since E(K) ¢® M, M is not directly finite.

a]

Proposition 1.28. A directly finite injective module M has the internal cancellation
property.
PROOF. Let M= A e C = BeD with A~ B. Using Zorn’s Lemma we can find a

monomorphism C > C~ >—£—> D which cannot be further extended. Injectivity of

C implies that C* ¢® C and D’ = fC* ¢° D. Write C=C’eC_, D = D’ @ D,
AO=A$C' andB0=B$D'. Then

M= A0®CO=BO®D0withAogBo.
If CO = 0, then

M=B0eDogAO$D0gMeDO.
Since M is directly finite, D 0= 0 and hence C ¥ D. Thus our proof will be complete
if we show C0 = 0.

Assume that Co # 0. As f cannot be extended, Co and D o have no non-—zero

isomorphic submodules; hence Co nD 0 = 0 and therefore Co ®D o ® M. Write
M= K0 ® C0 ® Do' Then

KOeDonggBogKoeCO.
Consequently

AO=A1®CI=B1¢1>D1
with A1 v K0 v Bl’ C1 v Co and D1 v Do‘ Thus C1 n D1 =0 as Co and D0 have no
non—zero isomorphic submodules. The same argument applied to A o yields
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A1=A2$02=B29D2
with A2 v B2, 02 v Cl’ D, ¢ D, and C2 n D2 = 0. Iterating this process we get for
every nel

An—l =An$cn=Bn$Dn
with An v Bn’ Crl v C, Dn ~ D and Crl n Dn = 0. It is clear that An # 0; otherwise
Brl = 0 and Cn = Dn in contradiction to Cn n Dn = 0. Now

M=AeC =AeCoC =..=A o(C e.oC oC) Thisproves
(1]
that M contains the direct sum e Ci with Ci v CO, which is a contradiction to
i=1
Proposition 1.27. Hence C 0= 0. o

Theorem 1.29. An injective module M has the cancellation property if and only if M is

directly finite.

PROOF. We first note that any module M with the internal cancellation property is

directly finite. Indeed, f M = A © B with A ¥ M, then MeB~ Ae B = M

= M @0, and hence B = 0.

The converse direction follows by Theorem 1.21 and Propositions 1.23 and 1.28.

o

Remark. The conclusion of Theorem 1.29 holds for quasi-injective modules and even

for continuous modules (see Corollary 3.25).

4. DECOMPOSITION THEOREMS
In this section we shall obtain a decomposition of injective modules into directly
finite and purely infinite submodules with strong uniqueness properties.

Definitions 1.30. Let A and B be summands of a modules M. A is said to be
perspective to B if there exists X < M such that M = A # X = B o X. We say that A
is superspective to B if for any submodule X < M, M = A eX if and only if
M=BeX.

Perspectivity is reflexive qnd symmetric but not, in general, transitive; while
superspectivity is an equivalence relation.

A decomposition M = M1 -] M2 with certain properties is said to be unique
(unique up to superspectivity , unique up to isomorphism), if for any other
decomposition M = N1 ® N2 with the same properties, M, = Ni (Mi is superspective
toN;, M, ¥ N.), (i = L,2).

Obviously one has the implications
unique 2 unique up to superspectivity » unique up to isomorphism.
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Lemma 1.31. Let N and o X, be submodules of a module M. IfNn (e Xi) $0,
i€l i€l
then there exists jel such that X. and N have non—zero isomorphic submodules.

PROOF. Nn(® X.)¢#0, implies Nn (e X.) # 0 for a finite subset F ¢ I. Let K
i€l ieF

1
be a maximal subset of F such that Nn (e Xi) = 0. Consider jeF-K and let 7 be
ieK
the projection X. ® (® X,) —>> X. Then N* =n(X;®(® X)) # 0 and
ek ! ) I ek
NZN'ng'ng. o

As a tool for the following proofs, and for later applications, we describe a
general method for constructing direct decompositions. The easy verifications are left
to the reader.

Two modules will be called orthogonal if they have no non—zero isomorphic
submodules. For any class #of modules, * denotes the class of modules orthogonal
to all members of & It is clear that #C #** and $* = &***

&= £ ** holds if and only if #is closed under isomorphisms, submodules,
essential extensions and direct sums (use Lemma 1.31). Such a class Fis also closed
under extensions, and factors modulo closed submodules; but need not be closed under
arbitrary factors nor products (cf. the class of torison—free and torsion abelian groups,
respectively).

&' and F** form what we call an orthogonal pair, i.e. a pair of classes .6and

Zsuch that £+ = Zand B* = £. Given such a pair, and an arbitrary module M,
then there are submdoules A and B of M maximal with respect to A € .£and B € 2.
The sum A + B is direct and essential in M. A and B are not necessarily unique, not
even up to isomorphism; in fact the possible B’s are precisely the complements in M
of any A and vice versa.

If M is injective (or more generally quasi—continuous; cf. Lemma 2.36), we
obtain a direct decomposition M = A @ B, which is unique up to superspectivity.

If ones starts (as we will in the applications) with a hereditary class, i.e. a class
& closed under isomorphisms and submodules, then

&* = {V : V has no non—zero submodule in %}

&** = {L : every non—zero submodule of L has a non—zero
sub-submodule in %}.

In this situation, we shall call & * and % ** the Fwoid and % full classes,
respectively.
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Definition 1.32. A module P is called purely infiniteif P ¥ P o P.

Lemma 1.33. Let P be a purely infinite module. If B >—> P, then B(m) >—> P.
PROOF. It is easy to see that P(m) >——> P; hence B(m) >—> P. o

Lemma 1.34. Let E = B © P where E is injective and P is purely infinite. If
B>—> P, thenE ¥ P.

1]
PROOF. By the previous lemma B(m) >—> P; hence P > ® Bi with Bi v B.

i=1
Since B and P are injective
(0] 1]
P=E(e B)eC=E(B)eE(e B)eC
1]
“BeE(e B)eC=BeP=E o
i=1

Now we have all the ingredients for the decomposition theorem.

Theorem 1.35. FEvery injective module E has a decomposition, unique up to
superspectivity, E = D ® P, where D is directly finite, P purely infinite, and D and P
are orthogonal.

PROOF. We first prove the existence of the decomposition. Consider the hereditary

class &= {X: X(m) >——> E}. Then E = V @ L where V is #void and L is #full.
By construction V and L are orthogonal. Also V is directly finite by Proposition 1.27.
We proceed now to show that L is purely infinite. By Zorn’s Lemma, there

exists a maximal direct sum K = @ Ya in L, where each Ya is isomorphic to an
ael

infinite copower X‘(Im). Hence

[11]
Kr o X(m)g(e X)(m)=e Z.,
aeh @ a€EA i=1 !
where Z. * ® X , for all ieN. Let
1 4%
a€EA
K, =

n=1 n=1

Zo,
Then K = K1 ® K2 and K1 v K K. Since L is injective, L = F @ N where
N = E(K). Maximality of K then implies F is directly finite. Also
N = E(K) = E(K,) e E(K,) * N N,
hence N is purely infinite.

[y [y
® Z, , and K, = :
v
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Another application of Zorn’s Lemma yields a monomorphism F > H >i> N

that cannot be extended. Since L is injective, H ® F and fH ® N.  Write
F=HeH’and N =fH e N’. Then

fHeN' =N¥NeN=fHe N’ eN.
Since fH, being isomorphic to H, is injective and directly finite, we get by Theorem
1.29 that N/ ¥ N’ @ N. Since N’ < N and N is purely infinite, N’ ¥ N by Lemma
1.34.

Now we claim that H” = 0. Suppose not. As H’ is #full, H’ contains a

11
non—zero submodule W such that W(m) >—> E. Then E> o Wj such that

=1
1]
Wj v W for every jelN. Since V is &void, V.n( @ Wj) =0 by Lemma 1.31. Hence
=1
o 1]
® Wj >—> L. Since F is directly finite, Nn ( Wj) # 0; otherwise
=1 j=1

®

® Wj >—> F, a contradiction. Applying Lemma 1.31, we get téNand 0 # T < N
j=1

that

As T < N ¥ N’, we get a non—zero monomorphism H- > H" >-8 > N’. But then
H@H"f—$5—>fHeN' =N
extends f, a contradiction. Hence H’ = 0, and so F = H. Thus F >—> N, and by
Lemma 1.34, L = F @ N~ N. We conclude that L is purely infinite.
Now we prove the uniqueness. We will establish this by proving that for any
other decomposition E = D ® P with the given properties, D is #void and P is

ZHull. Since P(m) >—> P < E, we have Pe Zand consequently P is #full. Now

(]
consider D, and let 0 # Xe Fsuch that X < D. Thus E > e Xi with Xi ~ X for
i=1

o (]
every ieN. If Pn (® X,) =0, then ® X, >—> D, a contradiction since D is
i=1 i=1

[ 1]
directly finite. On the other hand P n (@ X;) # 0 yields by Lemma 1.31 that there
i=1

exists 0 # P/ < P and teN such that P’ >_>Xt‘ Then

P>P >—>thX5D
which is again a contradiction since P and D have no non-zero isomorphic
submodules. Therefore X = 0 and hence D is #void. Hence the decomposition
M = L @ V is unique up to superspectivity. o
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COMMENTS

Baer [40] initiated the study of abelian groups which are summands whenever
they are subgroups. These are precisely the divisible abelian groups, that is abelian
groups G with nG = G for every neN. Modules which are summands of every
containing module were studied by a number of authors (initially under several
different names, e.g. algebraicly compact, Mu—modules, ... etc). Eckmann and Schopf
[53] introduced the terminology "injective"; they also proved the existence of the
injective hull.

Johnson and Wong [61] defined the notion of a quasi—injective module. They
proved that a module is quasi-injective if and only if it is closed under all
endomorphisms of its injective hull, and hence any module M has a quasi-injective
hull (End E(M))M. Our proof of Lemma 1.13 is essentially the one given by Johnson
and Wong for quasi-injective modules.

(Quasi)-injective modules were studied extensively. A  number of
generalizations were defined and studied by many authors, e.g. pseudo—injective
modules (Singh [67]), Ker—injective modules (Birkenmeier [78]), m—injective modules
(Goel and Jain [78]). Another generalization of (quasi-)injectivity will be discussed in
Chapter 2.

Rings for which a certain class of modules satisfies some "generalized injectivity
property" were studied by many authors: Ahsan, Birkenmeier, Boyle, Byrd, Faith,
Goel, Jain, Koehler, Michler, Mohamed, Miiller, Osofsky, Saleh, Singh, Symmonds,
Villamayor, and others.

In this chapter we concentrated our attention on one generalization of
injectivity, namely A—injectivity (Definition 1.1), as it is indispensible for our study of
(quasi—)continuous modules in later chapters. This notion was studied by Azumaya
[P], Azumaya et al. [75], Sandomierski [64] and de Robert [69].

The proofs of 1.2 to 1.6 are essentially the same as for the analogous results for
injective modules. Theorems 1.7 and 1.11 are results of Azumaya et al. [75], modified
by some ideas in Miller and Rizvi [84]. The rest of the results in this section are
modified versions of those obtained by Miiller and Rizvi [84].

Theorem 1.21 was proved by Warfield [69a] for injective modules, and the proof
was generalized to quasi—injective modules by Fuchs [69]; the proof presented here is
slightly different. Proposition 1.23 is also due to Fuchs [72]. Suzuki [68] proved
Proposition 1.28 by utilizing the properties of the endomorphism rings of injective
modules; we give a different and a more direct proof. Using Suzuki’s result,
Birkenmeier [76] proved the conclusion of Theorem 1.29 for quasi-injective modules;
this theorem will be generalized to continuous modules in Chapter 3.
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Goodearl and Boyle [76] proved Theorem 1.35 for non-singular injective
modules, where the decomposition is unique. The existence of the decomposition for
arbitrary injective modules is contained in Goodearl [79], where the full theorem is
obtained from its non-singular special case via some functorial techniques. A direct
proof is given in Miller and Rizvi [83]; the proof included here is considerably shorter
and depends on the class decomposition developed in this chapter.



CHAPTER 2
QUASI-CONTINUOUS MODULES

In this chapter we discuss generalizations of the notion of continuous rings
studied by von Neumann [36] and Utumi [65] to modules. Such modules are also
generalizations of (quasi—) injective modules.

1. BASIC PROPERTIES
Proposition 2.1. Any (quasi-— )injective module M satisfies the following two conditions:
(Cl) Every submodule of M is essential in a summand of M,

(02) If a submodule A of M is isomorphic to a summand of M, then A is a summand

of M.
Pj;{OOF. Let N ¢ M and write E(M) = E; ® E, where E; = E(N). The
quasi-injectivity of M implies, by Corollary 1.14, that M = M n E1 e Mn E2; and it
is clear that N <® M n E,. Hence (C,) holds.

Let M~ >i> M be a monomorphism with M’ ¢® M. Since M is M-injective,
M- is M-injective by Proposition 1.6. Then f splits by Lemma 1.2; thus (C,) holds.

u]

Proposition 2.2. If a module M has (02), then it satisfies the following condition:
(C3) If M, and M, are summands of M such that M; N My = 0, then My @ M, is a

summand of M. i
* *
PROOF. Write M = M, e M1 and let 7 denote the projection M1 ® M1 —_> Ml'

Then M, e My = M, @ M, Since 7r|M2 is a monomorphism, we get T™M,, M by

*
(Cy)- As M, < M, M, ® M, ¢° M. o

2

Definition 2.3. A module M is called continuous if it has (Cl) and (C2); M is called

quasi—continuous if it has (C,) and (C,).

We have just seen that the following implications hold:
Injective # quasi-injective # continuous » quasi—continuous 3 (C,).
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To illustrate this hierarchy of concepts, and at the same time demonstrate that
they are all distinct, we list now, without proof, all abelian groups with these
properties. (Proofs are easily obtained from the following development, and from
Kamal and Miiller [88a]). We also display how regular rings, as right modules over
themselves, fit into the scheme.

Abelian Groups Concept Regular Rings
9{0, C‘I'; (all p)} Injective

Right self injective
Quasi—injective

above, and
e{cg(l’) (all p)}
Continuous 3
above, and Quasi—continuous
X @ torsion injective S Right continuous
(X<0Q)
above, and (¢y) J

xt e(injiectiv(e,)and
n(p) ~n(p)+1 ® }
e{Cp , CaP+L o1 2 (all p)

For a discussion, and a certain amount of classification of self-injective and
continuous regular rings, cf. Goodearl [79]. Simple examples of a self-injective regular
ring, and a continuous regular ring which is not self-injective, are Il F  (where {F }

is an infinite family of fields), and its subring l'I(Fa, Pa) (where the P, are proper
subfields of the Fa) consisting of all the sequences with almost all entries in P , cf.

Utumi [60].

A submodule of a module M is closed if it has no proper essential extensions in
M. A submodule X of M is a complement if it is maximal with respect to X N Y = 0,
for some submodule Y. Closed and complement submodules are the same; they exist
in abundance, by Zorn'’s Lemma.

The following two results are obvious.
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Proposition 2.4. A module M has (Cl) if and only if every closed submodule of M is a

summand. )

Proposition 2.5. An indecomposable module M has (Cl) if and only if M is uniform.

Any uniform module is quasi—continuous. o

Lemma 2.6. Let A be a submodule of an arbitrary module M. If A is closed in a
summand of M, then A is closed in M.
PROOF. Let M = M, o M, with A closed in M;. Let 7 denote the projection

M1 ® M2 —_>> Ml‘ Assume that A ge B for some B < M. Then it is easy to see
that A = 7A ge 7B < Ml' Since A is closed in Ml’ 7B = A ¢ B, and so, (1-7)B < B.
Since (1 - 7B NA =0and A <®*B, (1 -7)B = 0 and hence B = 7B ¢ M,. Then

A = B since A is closed in Ml' o

Proposition 2.7. The conditions (C;) (i = 1,2,3) are inherited by summands. In

particular, any summand of a (quasi—)continuous module is (quasi—)continuous.
PROOF. Follows from the definitions and Lemma 2.6. o

We end this section by giving characterizations of quasi—continuous modules, in
terms of their injective hulls, and their complement submodules.

Theorem 2.8. The following are equivalent for a module M:
(1) M is quasi—continuous;
(2) M =XeY for any two submodules X and Y which are complements of each
other,
(3) M < M for every idempotent f € End E(M);
(4) E(M)= e E, impliesM = ® MnE,
i€l iel
PROOF. (1) 2 (2): Now X, Y ¢® M by Proposition 2.4, and hence X @ Y ¢® M by
(C3). Since X @Y EM,M=XeY.

(2) 2 (3): Let A1 = M n {f E(M) and A2 = M n (1-f) E(M). Let B1 be a
complement of A2 that contains Al, and let B2 be a complement of B1 that contains

A,. Then M = B, ® By Letw be the projection B, ® By —>> B;. We claim

2 2 1
that M n (f - 7) M = 0. Let x, y € M be such that (f - 7)(x) = y. Then
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f(x) = y + m(x) € M, and hence f(x) € A,. Thus (1 —f)x € M and so (1 - f)x € A,.
1 2
0.

Therefore 7(x) = f(x), and consequently y =
M <® EM), (f- )M = 0, and so fM = 7M ¢ M.
(3) 2 (4): It is clear that ':I M n E, < M. Let m be an arbitrary element in M.
1
Then m € ® E, for a finite subset F ¢ I. Write E(M) = e E. o E. Then there
ieF ieF
exist orthogonal idempotents f, € End E(M) (i € F) such that E, = f, E(M). Since

This proves our claim. Since

fiM < M by assumption,
m=(I f)(m)=3 f(m)e e MnE,
ieF ieF

ieF
Thus M < @ Mn Ei and therefore M = e M n Ei‘
i€l i€l .
(4) = (1): Le¢ A < M. Wrte EM) = EA) e E. Then

*
M=MnEA)eMNE with A <®MnE(A). Thus M has (C,). Let M;, M, c° M
with M; n M, = 0. Write E(M) = E; @ E, @ E’ where E; = E(M;),i = 1,2. Then

M=MnE1$MnE eMnE-".

2

Since M, ¢® M and M; <* M 0 E;, M, = M 0 E; (i = 1,2). Therefore M has (C,).

o

2. DIRECT SUMS OF QUASI-CONTINUOUS MODULES

A summand of a quasi—continuous module is quasi—continuous (Proposition 2.7).
However a direct sum of quasi—continuous modules need not be quasi—continuous.
This is illustrated by the following:

Example 2.9. Let R = FF Y Ghere F is any field. Let A = FF and
0F 00
B= [ 8 g ] It is clear that A and B are quasi—continuous as R-modules (in fact A

is injective and B is simple). However R = A @ B is not quasi—continuous. (It is
easy to check that Rp satisfies (C,) but does not satisfy (03).) o

The following proposition gives a necessary condition for M;e M, to be

quasi—continuous.

Proposition 2.10. If M1 ® M2 18 quasi—continuous, then M1 and M2 are relatively

injective.
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PROOF. We show M2 is Ml-injective. Write M = M1 ® M2. Let X < M1 and

¢ : X —> M, be a homomorphism and let B = {x — ¢(x) : xeX}. It is obvious that
* *

Bn M2 =0. Let M1 be a complement of M2 that contains B. Then M = M1 ® M,

*
by Theorem 2.8. Let 7 denote the projection M; e My —>> M,. Forall x € X we
have 0 = 7 (x - ¢(x)) = n(x) - m{p(x)) = n(x) - ¢(x). Hence 7|, extends ¢.
1

o
Corollary 2.11. If M1 ® M2 s quasi—continuous and M1 >—> M2, then M1 18

quasi—injective. M s quasi—injective if and only if M e M is quasi—continuous.
o

Corollary 2.12. A purely infinite module M is quasi—injective if and only if M is
quasi—continuous. 0

Now we consider a direct sum M = o Ma of quasi—continuous modules Ma‘
aeh

A necessary condition for M to be quasi—ontinuous is that M(A — @) is Ma-—injective

for every a€A. In the following we show that this condition is also sufficient.

Theorem 2.13. Let {Ma : a€A} be a family of quasi—continuous modules. Then the

following are equivalent:

(1) M= e M_isquasi—continuous;
acl

(2) MA-0)is M —injective for every a€A;
(8) M, is Mﬂ—injective for all a# B € A and (A,) holds.

PROOF. (2) & (3) follows by Proposition 1.9, and (1) # (2) by Proposition 2.10. It
remains to show (2) 2 (1). In view of Theorem 2.8, we have to show that eM < M for
every idempotent e € End E(M). Since

eM=e( ©¢ M )= T eM_,
aeh ¥ aenr @

we need only show that eM <M for every a € A.

Consider a fixed @ € A. Since Ma is Mﬂ—injective for all a# § € A, Ma is
M(A - a)-injective by Proposition 1.5. Write Ny = M_ and N, = M(A - @). Then
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N1 and N2 are relatively injective and N1 is quasi—continuous. Let E, E1 and E2

denote the injective hulls of M, N1 and N2, respectively. Then E = E1 ] E2 and

oo |11 C12
T le e j 2171 =
21 ~22
Lemma 1.13; consequently
eN1 = eHN1 + e21N1 < eHN1 + N2.

Thus it is enough to show that e; Ny ¢ M.

. 2 _ 2 e _
Since e = e, €11 = €11t €9 €y Write a = €1 andb=1- €1 Then

} where e : Ej —> E;. Since N, is N,-injective, e, N; < N, by

2
ab=ba=a-2a"= €19€9 € End El'
Let K = Ker ab; then it is obvious that aK n bK = 0 and aK < Ker b < Ker ab = K.
Hence K = aK @ bK. Since E1 is injective, there exist orthogonal idempotents f and
g in End E, such that E, = fE1 ® gE,, aK ¢ fEl and bK < gE;. Then
fK = f(aK @ bK) = faK = aK.

Therefore K n fE1 <fK=aK <Kn fEl; and consequently beiy__a-?Ei
anE1=aK5Kerb. /
1 7 \'g
Hence a|be is a monomorphism. Since E, is v
1 ¥V
E
injective, there exists ¥ € End E; such that 1
bf = vabf.

Since N 1 is quasi—continuous and N 1 and N2 are relatively injective, we get by
Theorem 2.8 and Lemma 1.13

BNy = 9abiN; < JabN) = de;se9 Ny < e Ny <N
Similarly one can prove that a,gN1 < Nl' Then

aN; = a(f + g)N; = afN; + agN; = (1 -b)IN; + agN; ¢ N,.

Hence eHN1 = aN1 < Nl' o
n

Corollary 2.14. e M, is quasi—continuous if and only if each M, is quasi—continuous
i=1

and M j—injective forallj#i. o
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3.  DECOMPOSITIONS OF QUASI-CONTINUOUS MODULES

In general, a quasi—continuous module need not be a direct sum of
indecomposable submodules. On the other hand, a quasi—continuous module which is
a direct sum of indecomposable submodules, behaves in many ways as if these
submodules had local endomorphism rings, though this need not be the case. Here we
characterize those quasi—continuous modules which are direct sums of indecomposable
modules. We also discuss briefly some fundamental properties of arbitrary modules
which are direct sums of indecomposable submodules.

Definition 2.15. A family {X ATAE A} of submodules of a module M is called a local

summand of M, if £ X A is direct and ¥ X)‘ is a summand of M for every finite

A€A A€eF
subset F C A. (When there is no danger of confusion we simply say that & X ) isa
AEA
local summand of M). If even X X/\ is a summand of M, we say that the local
A€A

summand is a summand.

We shall prove that if every local summand of M is a summand, then M is a
direct sum of indecomposable submodules (Theorem 2.17). First we need a lemma:

Lemma 2.16. Let M be an arbitrary module. FEvery local summand of M is a

summand if and only if the union of any chain of summands of M is a summand.

PROOF. "If" : Let &= {X, : A € A} be a local summand of M. Let £ be the

family of all subsets {2 of A such that ¥ X, c® M for every finite subset F CA
AEQUF

Consider a chain Qa in ., and let Q=u Qa’ Then for any finite subset F C A,
a

z X/\ =U( X

AEQUF a /\EQaUF )

is a summand of M by assumption. Thus Q € ., and hence is an upper bound of the
chain.

B,

Then Zorn’s Lemma applies to .£and we get a maximal element Q2. Suppose
Q+#A LetyeQ-Aandlet QT = QU {y}. For any finite subset F ¢ A,

I X, = b X,
retuF AeQU({7}UF)

It then follows that Q1 € £, which contradicts the maximality of 2. Hence = A,

and T X, ® M
A€EA

M.
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"Only if" : Let {M, : i € I} be a chain of summands of M. Consider the collection &
of all local summands % = {X/\ : A € A} with the additional property
L X, = U M for some subset J=J(%) of I. We order & by inclusion.
. 1
A€A ieJ )
Consider a chain % = {X, : A€ A }in Fandlet & =U Z ={X,:AeUA_}

It is clear that % is again a local summand. Now
T X,=u( 2 X)=u( u M)= U M..
A A . .
AeUA @ Xed, a ie)(z) ! lng(,za) !
Thus ,%~ € &, and hence is an upper bound of the chain.
If follows by Zorn’s Lemma that & has a maximal element & . Let

= X X/\ = U Mi‘ We claim that A = U Mi' Suppose not. Then there
A€A ieJ(Z) i€l

exists k € I such that M, { A. Hence Mki M, and therefore Mi < Mk for all

A

i € J(5). Since A ¢° M by hypothesis, M, = A @ B, for some 0 # B ¢ M. Then it is
clear that ZU {B} € #, which contradicts the maximality of .Z. o

Theorem 2.17. If every local summand of a module M is a summand, then M is a
direct sum of indecomposable modules.

PROOF. By Zorn’s Lemma, M contains a maximal local summand
&= {X, : A € A} where each X, is indecomposable. Let X = £ X,. Then
A A AeA A

XM by assumption; write M = X @ Y. We claim that Y = 0. To the contrary,
assume that Y # 0 and consider a non—zero element y € Y. By Lemma 2.16, there
exists a summand A of Y maximal such that y ¢ A. Then Y = A @ B with B # 0.
Now maximality of & forces B to be decomposable; so B = B, e B2 with B, #0

(i=1,2). Again maximality of A implies y € A e B, (i=1,2). ButthenyeA, a

contradiction. ThusY=0andM=X= o X

. n}
XeA A

Proposition 2.18. Let M be an R—module with (Cl)' IfR satisfies the ascending chain

condition on right ideals of the form m®, m € M, then every local summand of M is a
summand.

PROOF. Let % = {X, : X € A} be a local summand of M, and X = EA Xy If X
Y-

* *
is a closure of X in M, then X c® M and hence X has (C;)- So there is no loss of

generality if we assume that X <® M; in that case we have to show that X = M.
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Suppose that X # M and select m € M — X such that m° is maximal. Since X ¢© M,

there exists r € R such that 0 # mr ¢ X. Now mre o X)‘ for some finite subset
AeF

Fc A. By assumption, M = @ XA ® Y for some Y<M. Then m = x + y,
A€eF

X€E © X/\ and y e Y. Clearly y ¢ X and m® ¢ yo; hence m® = yo by maximality of
A€eF

m®. Since
yr=mr-xre(e X,)nY=0,
A€eF
mr = 0, a contradiction. Hence X = M. o

A ring R is right noetherian if and only if every injective R—module is a direct
sum of uniform modules (Matlis [58], Papp [59]). The following generalizes this result
to modules with (C,).

Theorem 2.19. If R is rihgt noetherian, then every R—module with (Cl) is a direct sum

of uniform modules.
PROOF. The result follows from 2.5, 2.17 and 2.18. o

If a module M has a decomposition M = e Mi where each Mi has a local
iel
endomorphism ring, then the Krull-Schmidt—Azumaya Theorem asserts that this
decomposition is unique up to isomorphism (i.e. if M = @ N. is another
jed
decomposition of M with indecomposable Nj’ then there exist an automorphism ¢ of
M and a bijection 7 : I —> J such that N i) = ") Mi)‘ The conclusion of this
theorem remains true in some cases where the M, are indecomposable but no longer

have local endomorphism rings. One example is the class of modules with a
decomposition that complements summands. (c.f. Anderson and Fuller [73], Ch. 3,
§12.) For the reader’s convenience we include the definitions and results which will
be used in this book.
(1) A submodule N of M is called a mazimal summand in M, if M = N @ N’ with
N indecomposable.
(2) A decomposition M = ':I M, is said to complement (mazimal) summands if for
1
every (maximal) summand A of M there exists a subset J C I such that

M=Ae(e M)
ieJ
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(3) Let M = ‘:I M., with each M, indecomposable, be a decomposition that
1
complements (maximal) summands. Then:
(a) This decomposition satisfies the conclusion of the Krull-Schmidt—Azumaya
Theorem,;
(b) Any other decomposition of M into indecomposables complements
(maximal) summands.
(4) Let M= @ M, be a decomposition that complements summands. Then:

iel
(a) M, is indecomposable for every i € I;
(b) Every summand of M has a decomposition that complements summands;
(c) M= o A, then T is the disjoint union of subsets I  such that
aeh
A ve M (€ A).
i€l o

Definition 2.20. A module M is said to have the (finite) extending property if for any
(finite) index set I, and any direct sum @ Ai of submodules Ai of M, there exists a
iel
family {M, : i€I} of submodules of M such that A, <¢ M, and e M. is a summand
i€l
of M.

For n € N, the n—ertending property for M will mean that M has the extending
property relative to index sets of cardinality n.

The proof of the following lemma is straightforward.

Lemma 2.21. Let M be an arbitrary module. Then:
(1) M has the 1-eztending property if and only if M has (Cl);

(2) M has the finite extending property, if and only if M has the 2-eztending
property, if and only if M is quasi—continuous;

(3) M has the extending property if and only if M has the finite extending property
and every local summand of M is a summand. o

Theorem 2.22. Let M be a quasi—continuous module. Then the following are
equivalent:
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) M is a direct sum of indecomposable (uniform) modules;

(1
(2) M has a decomposition that complements summands;
(3) Ewery local summand of M is a summand,

(

4) M has the eztending property.

PROOF. (1) =2 (2): Let M = © M, be a decomposition of M into indecomposable
iel

(hence uniform) submodules M;; we show that this decomposition complements

summands. Let N be any summand of M. By Zorn’s Lemma, there exists a subset
K¢ I maximal such that NnM(K) = 0. Since M is quasi—continuous,

NeM(K)c®M. Next we prove that N @ M(K) <® M; it then follows that
M = N o M(K). Let i€ I; then maximality of K implies X, = (N @ M(K)) n M, # 0.

Since Mi is uniform, Xi <€ Mi’ and consequently

o X.See) Mi=M.

iel ' el

As N e M(K) > o X, N o M(K) <® M. This proves our claim, and hence the
iel

decomposition complements summands.

(2)2(3): Let M= e M bea decomposition that complements summands.

aeh
Let A = @ A. be a local summand of M. Since M is quasi—continuous,
jeJ

* *

A<EA ® M; and if we write M = A @ B, we get that ® A. ® B is a local
jeJ

summand of M and essential in M. So there is no loss of generality if we assume
A< M; in that case we have to show A = M.
Suppose A # M. Inductively we construct a sequence of elements X, such that
X, ¢ A, X, € Man, the o, are distinct, and
) 0 )
x1<x2<...<xn<....

Once this is done, we get a contradiction to (A3), and hence to (A2), which is valid

by Theorem 2.13. (Recall the conditions (A;) from Section 1 of Chapter 1).

Assume that Xpy Xg, oy Xp have been constructed. Since A <© M, there exist

I, € R such that 0 # XTI, € A, t = 1,2,..,n. There exists a finite subset F ¢ J such

that x,r, € ® A_forallt=12..,n Since A= & A.isalocal summand of M and
t't . j . j
JEF jeJ
the decomposition M = @ Ma complements summands, there exists a subset K C A
ael
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such that
M=o A e M().
jeF
. _ . 0,0
Write x, =a + Ly whereae © Aj and Ty € M(K). It is clear that x <y

jeF
for every a. Now
(Eya)rn=xnrn—arne( ® Aj)nM(K) =0,

jeF
and hence xg < yg. Since x, £ A, there exists § € K such that yﬂz A. Take

X1 =Yg then it is clear that X,

0 satisfies the required conditions.

+1
(3) » (1) follows by Theorem 2.17, and (3) & (4) is a consequence of
Lemma 2.21. o

We now state the definition of a concept which originated from the
T-nilpotency that occurs in the study of perfect rings (Bass [60]). It is equivalent,
under suitable assumptions, to a number of other interesting properties (see Theorem
2.25). Though it looks technical, it is usually the one condition that can be explicitly
verified.

Definition  2.23. A family of modules {M, : a€A} is called

locally-semi-transfinitely-nilpotent (IsTn) if for any subfamily Ma.(ieIN) with distinct
i

a. and any family of non-isomorphisms £ : M —> M
i Yy %+1

there exists neN (depending on x) such that { ... fof;(x) = 0.

, and for every x € Mal,

Proposition 2.24. Let {Ma . a€eA} be a family of uniform modules such that Ma is
M ﬂ—injectz’ve for all 6+ a € A. Then (A3) s equivalent to 1sTn. In particular both

hold if o Ma 18 quasi—continuous.

acl
PROOF. Let (A3) be given and consider = non-isomorphisms
M, —>M, (n € N), with distinct o ; and let x € M, . Set x; = x and
n n+1 1
X4l = £ f2f1(x). Then obviously xg < x?l 41 ond therefore xl(:l = xr(x)x +1 holds for

some m € N by (A3); consequently fm|me cxpR—> x +1R is an isomorphism.

Assume that x_ # 0. Then since M is uniform, f_ : M —> M is a
m %n ' m %n m+1
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monomorphism. It then follows by Lemma 1.2 that fm is an isomorphism, which is a

contradiction. We conclude that f ... fof;(x) =x =0.

Conversely, assume that {Ma} has 1sTn, and consider elements x €M
n

(n € N) where the a, are distinct and the sequence xg is increasing. If the sequence

xg does not become stationary, then passing to a subsequence we may assume

(s s
Xy <Xp4q for all n € M. Then the natural maps an —> X

monomorphisms, and hence their extensions by relative injectivity,

f M —M
n % 41

n+1R are not

, are non-isomorphisms. By IsTn, x =1 . .. ff(x;) =0

0 _p . ) )
holds for some m € N. We conclude X, = R, in contradiction to Xn < Xmar

The last statement follows from what we have already proved and Theorem
2.13. o

In this section we have discussed a number of properties for a module M which

has a decomposition M = e Ma into indecomposable submodules Ma‘ The
ael

following theorem, which we mention without proof, asserts that these properties are
equivalent to each other, and to some other concepts like the exchange property, in
case the M have local endomorphism rings. The equivalence of (1) to (4) is due to

Harada [83a), and of (4) to (6) to Zimmermann-Huisgen and Zimmermann [84].

Theorem 2.25. The following are equivalent for a module M with a decomposition

M= o Ma where each Ma has a local endomorphism ring:
aeh

(1) The radical factor ring S/J(S) of the endomorphism ring S of M is (von
Neumann) regular, and idempotents lift modulo J(S);

2)  Every local summand of M is a summand;

3)  The decomposition complements summands;

(

(

(4) {M_} is locally semi~T—nilpotent,
(5) M has the finite exchange property;
(

6) M has the exchange property. o

The implication (3) 2 (4) in this theorem holds without the assumption on the
endomorphism rings of the Ma‘ This was proved by Kasch and Zollner, and is

apparently not published; we include a proof for the reader’s convenience.
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Theorem 2.26. Any decomposition M = @ Ma which complements summands is
aeh

locally semi—T—nilpotent.
PROOF. It suffices to derive the conclusion of I1sTn for non-isomorphisms
f: M. —> M (ieN). We may also assume that M = e M.. Let
i i i+1 ieN 1

*
M, = (1 —fi)Mi. The following properties are easy to obtain, and the verifications
are left !;*o the reader: .
(@) M, nM;=0fori#mn,and M n M = 0if and only if { is a monomorphism;

*
(b) = M, is direct;

ieN
( ) m * m+1
c e M.eM = o M.
i=n ! mHl g
* *
For any subset K c N, we write M(K) = @ M, and M (K) = ¢ M, We

ieK ieK
*
first show that 1sTn holds if M = M (N). Indeed given aeM,,

a=(1-f)m +( —fy)my + .+ (-1 )m

with m; € M;. Clearly fn(mn) =0andm =1 ... fzfl(a), hence f ... f2f1(a) = 0.
Let E, D denote the subsets of N consisting of all even, odd numbers
respectively. ;I‘hen it is obvious that .
M =M (E) e M(D) = M(E) e M (D). .
Using the secgnd decomposition *to complement the summand M (E) we get
M=M (E)e M(E') e M (D),
where E- ¢ E and D’ ¢ D.

First assume that all the fi are monomorphisms. We claim that D’ = D.
Suppose not, and let t+1 be the least element in D — D’. For any x € Mt 11

x=12, + (1-f)m + I,
where 21 € M1 ®.. 0 Mt and I, € Mt+2 ® Mt+3 ® ... . Consequently x = — ftmt’
thus ft : Mt _— Mt 41 is onto and hence an isomorphism; which is a contradiction.
This proves tliat D =D, so

M =M (N) e M(E").
Assume that E- # § and let k be the least element in E-. If E/ contains an element
t # k, then by (c) above

M=Me..eMo..eMo(

o *
:t M;) e M, @ M(E")
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where E" = E/ — {k,t}. However, this contradicts the fact that the sum is direct.
Therefore E’ contains exactly one element k. Thus

[ *
M=Me..oM @ (izk M;).

Again consider an element x € M Then

k+1
n

x=y+ T (1-f)m,
i=k

where y € M, e..oM,m €M andneN Since each fi is a monomorphism, we
get x = —fkmk, and therefore fk is onto, hence an isomorphism, a contradiction. This

*
proves that E- = §, and hence M = M (N). However this implies that 1sTn holds,
which is a contradiction since all fi were assumed to be monomorphisms.

It follows that the fi are not all monomorphisms. Composing maps together,

and reindexing, if necessary, we may assume, without loss of generality, that none of
the f, is a monomorphism. Then applying (a) we get E/ = @, and hence
* *
M =M (E)eM (D).
But then M = M (N) by (b). Hence IsTn follows. o

We end this section with yet another property of modules with decompositions
complementing summands.

Proposition 2.27. A module M with a decomposition that complements summands has
the internal cancellation property if and only if it is directly finite.
PROOF. Any module with the internal cancellation property is directly finite (see
the proof of Theorem 1.29).

Conversely assume that M is directly finite, and let

M=A 0B, =A,eB,, with A; ¥ A,
Let M=o M, be a decomposition that complements summands. There exist subsets

i€l

Jl’ J2, K1 and K2 of T such that

Janl=0,J2nK2=0,I=J1UK1=J2UK2;

Ay M()), By 2 M(K,), Ay & M(J,), B, 2 M(K,)

N
2 =
Since M is directly finite, every isotype appears with finite multiplicity. Then
A1 v A2 implies that every isotype appears with the same multiplicity in B1 and B,.

Hence B, ¢ B, follows. o
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4. INTERNAL CANCELLATION PROPERTY

By Theorem 2.22 and Proposition 2.27, a quasi—continuous directly finite
module, which is the direct sum of indecomposable submodules, has the internal
cancellation property. In this section, we prove that this result holds for arbitrary
quasi—continuous directly finite modules.

Lemma 2.28. Let M be a quasi—continuous module. Then

(1) M is purely infinite if and only if E(M) is so;

(2) M is directly finite if and only if E(M) is so.

PROOF. (1) If M is purely infinite, then M ¥ M @ M, hence E(M) ~ E(M) e E(M),
so E(M) is purely infinite.

Conversely, assume that E(M) is purely infinite. Then E(M) = E; @ E, with
E(M) v E, ¥ E,. As M is quasi—continuous, M = M, e M, where M, = M n E, and
M, =M nE, (Theorem 2.8). Now M, and M, are relatively injective by Proposition
2.10, and E(Ml) y E(M2). It then follows by Corollary 1.16 that M; & M,, thus M;
is quasi-injective. Then M and M1 are relatively injective by Propositions 1.5 and

1.6. Another application of Corollary 1.16 yields M1 ~ M. Hence M is purely infinite.

(2) If M is not directly finite, then M & M o X with X # 0. Hence
E(M) ¥ E(M) e E(X) with E(X) # 0, so E(M) is not directly finite.

Conversely, assume that E(M) is not directly finite. By Theorem 1.35,
E(M) =D e P where D is directly finite and P is purely infinite. Again the
quasi—continuity of M implies M = N1 ® N2 with N1 = M n D and N2 =NnP#0

(since P # 0). As N2 is quasi—continuous with purely infinite injective hull, N, is
purely infinite by (1). Then

M=N19N2gN1eN29N2=MeN2,
with N2 # 0. Therefore M is not directly finite. o

The following is an immediate consequence of the previous lemma and of
Theorems 1.35 and 2.8.

Theorem 2.29. Any quasi—continuous module M has a decomposition, unique up to
superspectivityy, M = D @ P, where D is directly finite, P is purely infinite, and P and
D are orthogonal. o
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Lemma 2.30. Any two closures of a submodule A of a quasi—continuous module M are
superspective.
PROOF. Let M, and M2 be two closures of A. Then Ml’ M2 M by Proposition

2.4. Write M = M, ® X. Since A 01X =0, M, N X = 0 and hence M, @ X ¢® M by

2 2
(C3). However M, © X <® M since it contains A ® X. Hence M = M, e X. o

Theorem 2.31. Let M1 and M, be summands of a quasi—continuous module M. If
E(M,) ¢ E(M,), then M, 2 M,
PROOF. Let U = M1 n M2 and let Xi be a complement of U in Mi‘ Then Xi ® M,
i =12 One can easily check that the sum X; + U + X, is direct. Then (C3)
*

implies M = X, ® B @ X, ® M where U <® B. Let B, be a closure of U in M,
i=12 AsUeX <M, M=B 60X WriteV,=BeX. ByLemma 230
B, ¢ B, hence Vi v Mi’ i = 1,2. Therefore our proof will be complete if we show
V2V,

By Theorem 2.29, B = D @ P where D is directly finite and P is purely infinite.
Now Xl’ X2 and P are relatively injective in pairs by Proposition 2.10, and P is
quasi-injective by Corollary 2.12. Then X, @ P and X, @ P are relatively injective,
by Propositions 1.5 and 1.6. Now

E(D) e E (P @ X,) = E(V,) # E(M,) ¥ E(V,) = E(D) @ E(P & X

1 2)

Since E(D) is directly finite by Lemma 2.28, we get by Theorem 1.29
E(P @ X,) 2 E(P @ X,)

HenceP e X, ¥ Po X2 by Corollary 1.16. Therefore
V1=DePeX1gDePeX2=V2. o

Corollary 2.32. In a quasi—continuous module M, isomorphic submodules have
isomorphic closures.
PROOF. Let A, < M and C, be a closure of A, (i= 1,2). 1If A ¥ A,, then

E(C,) & E(C,). Since C}, Co ¢® M, C, ¥ C, by Theorem 2.31. o
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Theorem 2.33. In a quasi—continuous module M, isomorphic directly finite submodules
have isomorphic complements. In particular M has the internal cancellation property if
and only if M is directly finite.

PROOF. Let A1 and A2 be directly finite isomorphic submodules of M. Let B, be a

complement of Ai and Ci a complement of B, which contains Ai’ i=12  Then
M=C, ® B, = Cy ® B, by Theorem 2.9. Since E(C;) = E(A;), E(C;) is directly

finite by Lemma 2.28. Since
E(Cl) ® E(Bl) = EM) = E(Cl) ® E(B2),

E(B,) ¥ E(B,) by Theorem 1.29; hence B, & B, by Theorem 2.31.

The last statement is obvious. o
A number of applications of Corollary 2.32 will be discussed in Chapter 3.

5.  QUASI-CONTINUITY VERSUS QUASI-INJECTIVITY

A quasi—continuous module which is a square is quasi-injective (Corollary 2.11).
In generalization of this observation we show that any quasi—continuous module
decomposes into a square free and a quasi-injective summand.

Definitions 2.34. A module S is called a square if S ¥ x2 for some module X; a
module is called square free if it does not contain a non—zero square.

A submodule T of a module M is called a square root in M, if T2 embeds in M;
we say that M is square full, if every non—zero submodule of M contains a non—zero
square root in M.

Proposition 2.35. A square full module M is quasi—injective if and only if M 1is
quasi— continuous.
PROOF. Any quasi-injective module is continuous (Proposition 2.1).

Conversely assume that M is quasi—continuous. By Zorn’s Lemma M contains a
direct sum K = o Sa maximal such that each Sa is a square. Let Sa v Xi, a€A.

ach
Then
2 2
Ky o XZn(e X)°
ath @ aen @
Hence K = K1 ] K2 with Ki v Xa’ i = 1,2. Since M is quasi—continuous,

ach
M=F e N, e N, with K; ¢ N, i = 1,2 (Lemma 2.21). Then maximality of K
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implies F is square free. Also N1 v N2 by Corollary 2.32, hence N1 ® N2 is
quasi-injective by Corollary 2.11. Since F and N1 ® N2 are relatively injective, in

view of Proposition 1.17, M is quasi—injective if and only if F is quasi-injective. We
shall prove this by showing that F embeds into Ny (Corollary 2.11).

To this end we apply Zorn’s Lemma to find a monomorphism F > H > > N1
which cannot be extended. Since N1 is F-injective, ¢ can be extended to a
homomorphism 9 : F —> Nl; and it is clear that the restriction of ¢ to any closure

of H is a monomorphism. Then maximality of the pair (H, ¢) implies H is a closed
submodule of F and so F = H @ H’ for some H’ < H. The proof will be complete if
we show H’ = 0.

Assume that H’ # 0. Then H’ contains a non—zero square root T. Then
M>W=W, eW, with W, » W, ¥ T. Now W n (N1 ® N2) = 0 would imply that

W embeds in F which is a contradiction, as F is square free. Thus W n (N1 ® N2) #0.

Applying Lemma 1.31 twice we get that N1 and W1 have non-—zero isomorphic

submodules. Hence we have a non-zero monomorphism H’ > H" >——0—> N,. Let

Y = gH n JH". Since
H> g lYuYs gLy ¢H" ¢H
and F is square free, Y = 0. Then H @ H’ —Mi> N1 is a monomorphism, and

this contradicts the maximality of the pair (H, ¢). Hence H’ = 0 as claimed.

o

The conclusion of the following lemma was stated, without proof, for injective
modules, in Section 4 of Chapter 1. We include a proof here for the general case.

Lemma 2.36. Let £ and B be an orthogonal pair of classes of modules:
(1)  Ifa module M has (C,), then M = A® B with A € Aand B € 3.

(2) If M is quasi—continuous, then the decomposition in (1) is unique up to
superspectivity.

PROOF. (1) By Zorn’s Lemma, M has a submodule A maximal with the property

A € 6. Since £ is closed under essential extensions, A is a closed submodule of M;

hence A ¢® M by (Cl)' Write M = A ® B. Applying the same argument to B, we

get B = C @ D where C is maximal such that C € #. Assume that D # 0. Since
D¢ &, D contains a non—zero submodule Z € .4 which is a contradiction to the
maximality of A. HenceD =0andsoM = A e®B withA e £ and Be 3.
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(2) LetM=A;®B; =A,eB, with A, € £ and B, € #,i =12 Assume that
M = A1 ® X. Then X ¥ B, hence X € 2 and therefore A2 nX=0 By (C3),

Ay0X M, and so M = A, ® X © Y. Then Aje Yy A; and X © Y v B,

Consequently Y€ £ n @B =0,s0 M = A2 ® X. This proves that A1 and A2 are

superspective. Similarly one can prove that B, and B, are superspective.
1 2

o
Theorem 2.37. A quasi—continuous module M has a decomposition, unique up to
superspectivity, M = M1 ® M2, where M1 18 square free, M2 18 square full, and M1 and

M2 are orthogonal. Moreover, M2 18 quasi—injective.

PROOF. Consider the hereditary class & = {X : X2 >—> M}. Then by Lemma
2.36, M has a decomposition, unique up to superspectivity, M = M1 ] M2 where M1

is F-void and M, is F—full (see Section 4 of Chapter 1). By construction M; and
M2 are orthogonal, and it is clear that M1 is square free. We prove that M2 is square
full. Let N be a non—zero submodule of M2. Since M2 is & —full, N contains a
non—zero submodule T such that 12 >—> M. Since M1 is &—void, an application of
Lemma 1.31 yields s > M,. Hence M, is square full.

Next consider any decomposition M = A @ B with the given properties. It is
obvious that B is & —full. Now assume that A has a non—zero submodule X € %.
Since A is square free, x2 n B # 0; otherwise x2 >——> A, a contradiction. It then
follows by Lemma 2.31 that A and B have non-zero isomorphic submodules, a
contradiction. This proves that A is #—void. Therefore the decomposition is unique
up to superspectivity. o

COMMENTS

In the context of his investigations of continuous geometries, von Neumann
([36a], [36D], [36c]) introduced regular rings. He called such a ring continuous if its
lattice of principal right ideals is upper and lower continuous, indecomposable and
infinite dimensional.

Utumi ([60], [61], [66]) studied regular rings in which the lattice of principal
right ideals is upper continuous. He called them right continuous regular rings, and
characterized them as regular rings with the condition (Cl)'

Utumi [65] proceeded to investigate right continuous rings which are not regular;
he defined right continuity via the two conditions (C;) and (C,). Note that (C,) is
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automatically satisfied if the ring is regular. He also utilized (C3), which is a
consequence of (C,), and a condition (C): for any two right ideals A; and A, with
A1 n A2 = 0, the projection A1 ® A2 —>> A1 is given by left multiplication by a

ring element.

The concepts of continuity and quasi—continuity were generalized to modules by
Jeremy [74] and Mohamed and Bouhy [77], the condition (C) was extended to modules
by Goel and Jain [78], and was called =—injectivity. It is equivalent to
quasi—continuity, and also to the finite extending property defined by Harada [82b)].

Theorem 2.8 comprises results of Jeremy [74] and Goel and Jain [78]. The
relative injectivity in Proposition 2.10 was observed for continuous rings by Utumi
[65], for continuous modules by Mohamed and Bouhy [77], and for quasi—continuous
modules by Goel and Jain [78].

The results 2.13, 2.22, 2.24, 2.29, 2.31, 2.33 and special cases of 2.13 are due to
Miiller and Rizvi ([83], [84]). Theorem 2.13, in full generality, is new, and was
demonstrated independently by Mucke [88]. The (easy) special case M; n M, =0 of

Theorem 2.31 was observed in Jeremy [74] and in Goel and Jain [78].

Proposition 2.18 and Theorem 2.19 are due to Okado [84]. The material in
Section 5 is due to the authors [88b], except that something like Theorem 2.37 is
mentioned without proof in Jeremy [74].

The condition (C,) was studied by Kamal [86], and by Kamal and Miiller

[88 a,b,c]. Several variations of that condition are investigated in numerous papers by
Harada and his collaborators, under the heading of "extending properties". Rings
with (C,) are considered by Chatters et al. ([77], [80]).



CHAPTER 3
CONTINUOUS MODULES

In this chapter we study the structure of the endomorphism rings of continuous
and quasi-injective modules. = Though many of the basic lemmas hold for
quasi—continuous modules, the endomorphism ring of a continuous module M possesses
some crucial properties which fail we only assume that M is quasi—continuous.

As an application of these results, in conjunction with some theorems proved in
previous chapters, we show that continuous modules have the exchange property.

Beyond these facts involving the endomorphism ring, we will discuss a few other
properties of continuous modules, which do not generally hold for quasi—continuous
modules.

1. ENDOMORPHISM RINGS
Throughout this section, S will denote the endomorphism ring of a module M, J
the Jacobson radical of S, A = {a € S : Ker « <°* M} and § = §/A.

The following lemma, whose proof is straightforward, will be used freely in this
section.

Lemma 3.1. Let A be a submodule of M, a € S, and e an idempotent of S. Then:
(1) IfA <€ M, then eA <€ eM;
(2) oM < eM if and only if oS < €S. o

Lemma 3.2. For an arbitrary module M,
(1) A is an ideal; and
(2) if {e; : i € I} is a family of idempotents of S which are orthogonal modulo A,
then ¥ eM is direct.

i€l
PROOF. (1) Let a, b € A and e € S. Then Kera <®* M and Ker b <®* M. Since
Ker(a-b) > Ker a n Ker b and Ker aa > Ker a, Ker(a-b) and Ker aa are essential
submodules of M; and consequently, a-b € A and owa€e A. Let
N={ne€M: on) € Ker a}. Then it is clear that N <* M and Ker aa > N. Hence
aa € A.
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(2) It suffices to consider a finite family e For i # j, eiej € A and hence
Ker &e; <® M. Since a finite intersection of essential submodules is again essential,
there exists an essential submodule K of M such that eiejK = 0 holds for alli # j. It
follows immediately that & eiK is direct. But eiK ¢ eiM, and consequently T eiM is

also direct. o

Lemma 33 Let M = M; o M, If M1 and M2 are orthogonal, then
S/A¥S /A x Sz/Az. The converse holds if M; and M., are relatively injective.

s, 9
1

PROOF. We can write any s € S as s = [
P 8o

} where 5| € End Ml’ 5, € End M2,

wE Hom(Ml, M2) and 9 € Hom(M2, Ml); further S1» S @ and 1 may be considered

as elements of S by defining them to be zero on the other summand. Then
orthogonality of M1 and M2 implies ¢, ¥ € A. It is also clear that

Ker s n M; = Ker s, n Ker v and Ker s n M,, = Ker sy n Ker 9.

Now we prove that s € A if and only if 8 € Al and S, € Az. Assume that
s € A. Then Ker s se M and hence Ker 81 nKer o = Kers n M1 Se Ml' But then
Ker s, <€ M, and 5 € A;. Similarly S, € A2. Conversely, assume that 5) € Al and
5o € Az. Since Ker ¢ <€ Ml’ Ker ¢ n Ker h <€ Ml’ and hence Ker s n M, ¢ Ml‘
Similarly Ker s n M, ¢ M, Therefore Ker s <* M and s € A. Hence

A= S1/8, 8 S A, xS./A
S/A=1 " So/By | = S1/81 % Sy/By.
The last statement is obvious. o

A ring is called reduced if it has no non—zero nilpotent elements; every
idempotent of a reduced ring is central (cf. Stenstrom [75], p. 40).

Lemma 3.4. IfM is square free, then S is reduced. In particular, oall idempotents of S
are central.
PROOF. Let a € S such that o? € A. Let K = Ker o® and L be a complement of
Ker . Then K ge M and Ker e L ge M. Now

Kera> o(KNnL)®KnL.
Since M is square free, K N L = 0 and consequently L. = 0. Therefore Ker a <M
and a € A. o
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Proposition 3.5. IfM is continuous, then S/A is a (von Neumann) regular ring and A
equals J, the Jacobson radical of S.

PROOF. Let @ € S and let L be a complement of K = Ker a. By (Cl)’ Lc®Mm
Since |y, is a monomorphism, oL c® M by (C2). Hence there exists § € S such that
fa = 1. Then

(a— afa) (KoL) =(a-afa)l =0,
and so K @ L < Ker(a — afie). Since K @ L <® M, @ - afa € A. Therefore S/Ais a
regular ring. This also proves that J < A.

Let a € A. Since Ker a n Ker(1-a) = 0 and Ker a <* M, Ker(1-a) = 0. Hence
(1-a)M ® M by (Cy). However (1-a)M <® M since Ker a < (1-a)M. Thus

(1-a)M = M, and therefore 1-a is a unit in S. It then follows that a € J, and hence
A< o

Remark. The conclusion of the previous proposition fails for quasi—continuous
modules (see Proposition 3.15).

Lemma 3.6. If M is quasi—continuous, then SS has (03)'

PROOF. By Theorem 2.37, M = M, o M, where M, is square free, M2 is
quasi-injective, and M; and M, are orthogonal. Then § = Sl x 32 by Lemma 3.3.
Since M, is continuous, 32 is regular by Proposition 3.5, hence Sz has (02). Let e, I
be idempotents of 5, such that ESI n TSI = 0. Since e and T are central by Lemma
34, ef=Te e ESI n fSl = 0. Thus e and I are orthogonal idempotents, and ESI ® ISI

is a summand of 5;. Hence SIS satisfies (Cj). Therefore Sy satisfies (C,).
1

Lemma 3.7. IfM is quasi—continuous, then idempotents modulo A can be lifted.
PROOF. Consider &€ S such that & — &€ A, and let K = Ker( & - &. Since
§Kn(l - YK = 0, M= M; ® M, such that & < M, and (1 - §K < M,. Let e be
the projection M1 ® M2 —_>> Ml' Then

(e- YK <(e- & +(e— &(1- K = 0.
SincngeM,e—é"EA. o



42

Lemma 3.8 Let M be o quasi—continuous module, and {e; : i € I} a family of

idempotents in S. Then the following are equivalent:
(1) I ¢ Mis direct;
iel
(2) There ezist orthogonal idempotents fi such that eiS = fiS for everyi € I;

(3) T &S is direct.

PROOF. (2)= (3): Trivial.

(3) » (1): It is enough to consider a finite family e,. Since SS has (C,) and
T S is direct, we get © €5 ¢® 3. Thus there exist orthogonal idempotents g of S
such that EiS = 'g'iS. In view of Lemma 3.7, we may assume that the g are
idempotents of S. Then U gM is direct by Lemma 3.2. Now e = g and so
e — g€ € A. Hence there exist essential submodules K, such that (ei - giei)Ki = 0.
It is clear that eiKi < giM,, and hence © eiKi is direct. But since eiKi ge eiM, z eiM
is direct.

(1) # (2): Let C; be a closure of ¥ eM. Since M is quasi—continuous,

j#

M= eiM ® Ci ® Di
for some D; < M. Tt is easy to check that e M + C; + (1 —¢;) D, is direct; and since
D, < e D@ (1-¢)D,

M=¢MeoC; o (l—ei)Di.
Let f, be the projection of M onto ;M with kernel C; @ (l—ei)Di. Then fi2 ={, and
eiM = fiM. Hence ¢,5 = fiS, eifi = fi and fiei =e. Since ejM < Ci for every j # i,
fiej = 0. Thus fifj = fiejfj = 0. for all j # i. Therefore, the f, are orthogonal, and (2)
holds. o

Now assume that the idempotents e, are orthogonal modulo A. Then of course
by EiS is direct, and hence Lemma 3.8 applies. In this situation, we show that the f,
constructed in (2) satisfy i'i = Ei. First we note that e - f, vanishes on

e, Mo (1-¢)D,. Also (e; - fi)ej = &g, for j #i. Hence (e, - fi)ej € A, and therefore
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there exist essential submodules Nj such that eijg Ker (¢, — f,), for j # i. Since

N.<€eM

AR
e N.<CeeM<EC.
ol g !

This all shows that Ker(e, - f,) <® M, and hence e, —f €A

This, along with Lemma 3.7, proves the following:

Corollary 3.9. IfM is quasi—continuous, then any family of orthogonal idempotents of
S lifts to a family of orthogonal idempotents of S. o

Theorem 3.10. IfM is quasi—injective, then S is right self—injective and regular.
PROOF. S is regular by Proposition 3.5. Let A be a right ideal of 5, and
¢: A —> T a homomorphism. We use Zorn’s Lemma to obtain a maximal direct
sum © 5 of principal right ideals contained in A. Then @ &5 <® K. Since S is

i€l iel
regular and idempotents modulo A lift by Lemma 3.7, we may assume that each e is
an idempotent of S. Then T & M is direct by Lemma 3.8.

iel
Let gp(éi) = ii = ’_(iéi‘ Define ¢, : M —> M by 1/)i(eim) = x,¢;m, and

:® eM —> Mby v = e . Since M is quasi-injective, ¥ extends to an
iel ! el !

element a € S. Then
0=(a-h)g = (a-xe)e,,
and hence
0=(a- J_ciéi)éi =(a- <p)€i.

Now let a € A. There exists an essential right ideal K of S such that aK < e EiS.

i€l
Then
(a-¢)(2)K = (a-p)(aK) < (a - ) (,:I eS) = 0.
1
Since S, being regular, is non-singular, we get (@ — ¢)(@) = 0. Thus
o(a) = oa) = p(a) for all a € &, and « extends ¢. o

Theorem 3.11. If M is continuous, then S is right continuous and regular.
PROOF. Let A be a right ideal of 5. As in the proof of the previous theorem, there

exist idempotents ¢, € S such that @ éiS <® K. Let eM be a closure of @ eM. We
i€l i€l
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claim that ® €5 <® &5, Assume that (@ eS) n & = 0 for some &€ eS. Since S is
i€l i€l
regular and idempotents lift modulo A, we may assume that &is an idempotent in S.
Then (® eM) n &M = 0 by Lemma 3.8. Now e& = g hence e~ &€ A and
iel
consequently (e &§— &K = 0 for some K ge M. If follows that & < eM, so &K = 0
since @ e, M <®eM. Thus &€ A and &= 0, proving our claim.
i€l
Let a be an arbitrary element in A. Then
aSn(egS)<asnk =35,
i€l
and
aSn(e eS)<aSneS¢as.
iel
Hence 35 n &5 <® a5. However 35 n &5 is generated by an idempotent since 3 is
regular. Thus aS N €S = aS and consequently aS < eS. Therefore A < eS. Since

@EngK,KgGES. o
i€l

We recall that any quasi—continuous module has a decomposition into
orthogonal summands where one is square free and the other square full
(Theorem 2.37). The following proposition provides an alternate characterization of
these summands.

Proposition 3.12. Let M be a quasi—continuous module. Then

(1) M is square free if and only if S is reduced,

(2) M is square full if and only if every non—zero right ideal of S has a mon—zero

nilpotent element.

PROOF. If M is square free, then S has no non—zero nilpotent elements (Lemma 3.4).
Now we prove that if M is square full, then every non—zero right ideal of S contains a
NON—Zzero ni}*potent elememt. llet a € S - A. Since M is quasi—continuous,
M = (Kera) © B where (Ker a) is a closure of Ker . Then B # 0; otherwise Ker «
would be essential in M. Since M is square full, there exists 0 # Z < aB such that
72 >—> M. Thus M > Z @ %, with Z & Z, ¢ Z,. Define X and Y as follows: If

ZnZl=0,X=Za,ndY=Z1;andionZ1;£0,X=Zr1Z1 and Y the image of X
under the isomorphism Z —> Z2. In either case we get 0 # X < aB and Y < M such

that XN Y =0and X~ Y. Let 6: Y —> X be an isomorphism, and let X’ be a
complement of Y which contains X. Define p: X’ ® Y —> M by = 0 on X’ and
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L= (a|B)_la on Y. Since M is quasi-injective by Proposition 2.35, u exends to

B€S. Now, for any y € Y, o(y) € X < aB, and hence
o) = a(alp)™ ofy) = ofy)
Since o is an isomorphism, Ker af N Y = 0 and so o¢f ¢ A. However
(cz,[i)2 (X oY) = (aﬂ)zY = aff (efY) = af(cY) = afX = 0.
Hence (aﬂ)2 € Asince X' oY < M.
So far we have proved the "only if" parts in (1) and (2). Now by Theorem 2.37,
M= M1 ® M2 where M1 and M2 are orthogonal, M1 square free and M2 square full.

Then by Lemma 3.3, S = Sl ® S2 where S; = End M, i = 1,2. By what we have
already proved, Sl has no non—zero nilpotent elements and every non—zero right ideal
of 32 contians a non—zero nilpotent element. If S has no non—zero nilpotent elements,
then 32 = 0, thus 32 = A2 and hence 82 = 0, consequently M2 = 0. This proves the
"if" part of (1). The "if" part of (2) follows similarly. sl

Corollary 3.13. Let M be quasi—continuous. Then there is a ring decomposition
S= Sl x 52 such that Sl is regular and right self—injective, and 32 is reduced.

PROOF. By Theorem 2.37, M = M, o M,, where M, is square full and
quasi—injective, M2 is square free, and both are orthogonal. Orthogonality implies

§5=5, x5, (Lemma 3.3).

By Theorem 3.10, Sl is regular and self injective. By Proposition 3.12, 32 is

reduced. o

Remarks. (1) In the situation of Corollary 3.13, assume that M is non-singular.
Then A = 0, hence S = S1 x S2, and the decomposition M = M1 ® M2 is unique.

(2) If,in (1), M =R, then R = R, xR, where R, is regular and right—self-injective,
and R, is reduced and right—quasi—continuous.
(3 If, in (1), M is continuous, then 32 is regular and right—continuous

(Theorem 3.11).
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2.  CONTINUOUS MODULES

In this section we use Corollary 2.32 and results obtained in the previous
section, to give necessary and sufficient conditions for a quasi—continuous module to
be continuous. We also discuss some properties of continuous modules, which fail to
hold for quasi—continuous modules.

Lemma 3.14 A quasi—continuous module M is continuous if and only if every
monomorphism M >—> M with essential image is an isomorphism.

PROOF. The "only if" part is obvious. Conversely, assume the condition and let
Nc®Mand f: N —> M be a monomorphism. As M is quasi-continuous,
M = A @ B with N <®* B. Since IN v N, B ¥ N by Corollary 2.32. Letg: B—> N
be an isomorphism. Then

M=AeB- 28 A.N2f reB=Mm

is a monomorphism with image A ® fN <* M. By assumption, (1 ® f) (1 ® g) is an
isomorphism. Hence 1 @ { is onto, and consequently B = fN. Thus N c® M and (C2)

holds. o

Proposition  3.15. Let M be a quasi—continuous module, S = End M,
A ={aeS:Ker a<® M} andJ the Jacobson radical of S. Then M is continuous if
and only if A = J and S/A is regular.

PROOF. Necessity follows by Proposition 3.5. Conversely, assume that A = J and

S/A is regular. Let ¢ € S be a monomorphism with essential image. There exists
$€S such that o — ¢ ¥ ¢ € A. Consequently (1-py)pK = 0 for some K <* M.
Since ¢ is a monomorphism, K <€ oM; thus gK EM as oM <® M. Therefore
1-pYe A =1J, and hence o9 is a unit in S. Thus ¢ is onto, and consequently ¢ is
an isomorphism. Then M is continuous by Lemma 3.14. o

Theorem 3.16. The following are equivalent, for a module M = o Ma:
aeh

(1) M is continuous;
(2) M s quasi—continuous and the M  are continuous;

(3) M , is continuous and M ﬂ—injective for all a:# B, and (A,) holds.

PROOF. (1) implies (2) trivially, and (2) and (3) are equivalent by Theorem 2.13.
It remains to see that (2) implies (1). According to Lemma 3.14, we have to establish
that every essential monomorphism f : M >—> M is onto.
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We first deal with the case of a finite index set A = {1, ..., n}. Here we have
n n
EM) = e E(M,) = e E(IM_). We choose closures C  of fM in M. Since
1 a=1

fMa v M a ® M, Corollary 2.32 yields Ca v M o Thus we obtain an essential

monomorphism Ma v fMa <€ Ca v Ma of Ma, which is an isomorphism by Lemma

3.14. Consequently fMa = Ca is a summand of M, and hence closed. We deduce

n
Mn E(fM ) = {M . As M is quasi—continuous, we infer M= e M nE(M ) =
a=1

n

® fMa = fM. This completes the proof in the finite case.

a=1

In the general case, suppose there is an essential monomorphism f: M >—> M

which is not onto. Inductively we shall construct a sequence X, € Ma — M, with
n

distinct o and strictly increasing annihilators x?l. This contradicts (A3), which is

valid for M according to Proposition 2.24.

Let x, € M, be constructed as claimed, for i < n. Write A = {al, . an}.
1

M(A) n M is obviously essential in M(A); therefore M(A) is a closure of M(A) n fM
in M. As fM ¢ M is quasi—continuous, M(A) n fM possesses another closure, V, in
fM. Now pick a closure W of V in M; then M(A) n fM <® V <®* W ¢® M. Clearly W
is also a closure of M(A) n fM in M. By Corollary 2.32, all these closures M(A), V
and W are isomorphic. They are continuous, by the finite case established earlier.
Thus the inclusion V < W yields an essential monomorphism W >—> W. We
conclude V = W, by Lemma 3.14.

As V. n M(A-A) = 0, and both submodules are summands, V ® M(A-A) is a
summand of M by (C,). But V > M(A) n fM <® M(A) implies that V & M(A-A) is

essential in M, and consequently equal to M. Write X, =v+ z Yp accordingly. As

x, £ fM and v € fM, there exists v £ fM. Take X4l to be such Yy and X its
index i. Clearly i # o), ..., a. Moreover, x 41 = 1r(xn), for the projection

M — oAy o, .0 -
M =VeMA-A) —>> Man+1. Thus x; < x_ . ;. By essentiality there

exists r € R with 0 # x r € M(A) n M ¢ V. We deduce x ;1 = n(x 1) = 0, and

+

therefore r € xg This completes the construction, and the proof.

(0]
+1 - Xn.
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As yet another application of Corollary 2.32, we show that continuous modules
satisfy the conclusion of the Schroder— Bernstein Theorem.

Theorem 3.17. Let M be a continuous module and N a quasi—continuous module. If
M>—> Nand N >—> M, then M ® N.
PROOF. Without loss of generality, we may assume N < M. Let ¢: M >—> N be
a monomorphism. Since M is continuous, ¢M ® M, and hence M c®N. Write
N = A @ ¢M, and let
B=A+ oA+ A + ..
(in fact the sum is direct). Then B = A @ ¢B. Since ¢M is (quasi—) continuous,
oM = P @ Q with ¢B <® P. Then
B=AeyB<*AeP.
Since B » ¢B, P ¥ A @ P by Corollary 2.32. Thus
N=AeyM=AePoQrPoQ=¢gM*M. o

Corollary 3.18. Mutually subisomorphic continuous modules are isomorphic.

Remark. Two subisomorphic quasi—continuous modules need not be isomorphic. For
an example, let R be a commutative domain which is not a principal ideal domain
(e.g. take R = k[x,y] for some field k). Pick an ideal A of R which is not principal.
Since A and R are uniform R—modules, they are trivially quasi—continuous. However
A¢R>—>AadA}R

3. THE EXCHANGE PROPERTY
In this section, we establish the exchange property for continuous modules. The
proof is based on the decomposition of a (quasi—)continuous module into a direct sum
of a quasi-injective and a square free part (Theorem 2.37). For the latter, the fact
that idempotents of the endomorphism ring modulo the radical are central, is used to
verify a criterion which was provided by Zimmermann—Huisgen and Zimmermann [84].
We start by proving some results concerning the exchange property.

Lemma 3.19. IfM has the exchange property and
A=MeNeL=12o A el,
i€l
then there ezist submodules B, < A; such that A = M e (® B;)eL.
i€l
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PROOF. Let p be the projection of M onto e Ai with kernel L. Then the
iel

restriction of p to M @ N is an isomorphism. Now

pMepN = o Ai'

iel

Since pM, being isomorphic to M, has the exchange property, we get

pMepN =pMe (e B)

i€l

with Bi < Ai' Hence

A=M$N$L=p_1(pMe(e B))=Me (e B)eL. a

i€l iel

Lemma 3.20. Let M = X @ Y. Then M has the ezchange property if (and only if) X
and Y have the exchange property.
PROOF. Assume that X and Y have the exchange property; and let

A = M ® N = ] A.

i€l !

Then A =X ®YeN=Ye (e B)with B, < A;. It then follows by the
iel

previous lemma that
A=XeYe (e C),
iel
with C; ¢ B;. Thus M has the exchange property. The converse is left to the reader.

u]

Definition 3.21. Given two modules U and V, a family (fi)iel of homomorphisms
U —> V is called summable if for each u € U, fi(u) = 0 for almost all i € I. (Then

T f, is a well defined homomorphism U —> V.)

For a module M, let S, A and J be as defined in the first section of this chapter.

Proposition 3.22. The following are equivalent for a module M :

(1) M has the ezchange property,

(2) IfMeN= o Ai’ with Ai 8 M for alli € 1, then there exist submodules Ci < Ai
iel

suchthat MeN=Me (@ Ci)‘
iel

(3) For each summable family (fi) in S with & f, = 1, there ezist orthogonal

iel
idempotents g€ Sfi such that © g =1
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PROOF. (1) = (2) is trivial.
(2) = (3): Let (fi)ieI be a summable family of elements of S such that T f; = 1.

Define A = o Ai withAi=Mfora,llieI.Deﬁnef:M—>Aby
i€l
f(m) = (fi(m))iel; and g: A—> M by g((mi)iel) = I m,. Itis clear that gf = 1,
iel
and so A = fM e Ker g. By hypothesis, Ai = Bi ® Ci such that

A=iMe (o C).

iel
Let p be the projection of A onto @ B, with kernel o Ci‘ Then the restriction of p
iel iel
to fM is an isomorphism; and it is obvious that pfg p_1 is the identity on ® B.. Let

iel
e ® B.—>>B j be the natural projection, and define e =8 p_1 ™ pf. Then
iel
ee.=gp L mplgp ‘mpf=gp L 7 pf
ij_gp i PLEDP jp—gp ijp'
- . 2 _

Thus eiej =0for j#1iand e =e.

Next, let P be the projection B, e Ci —>> B,. For anym ¢ M

7ripf(m) = Wip(fj(m))jel = Wi(pjfj(m))jel = pifi(m).
Hence 7ripf = pifi and consequently e = gp_1 pifi € Sfi. In particular, the family

(ei)ieI is again summable, and © g =1 follows by construction.

()2 (1) Lt X=MeY = 0o X. Letpj:eXi—>> Xjand
i€l
q: MeY —>> M denote the natural projections, and define hi =q K |M' Then
clearly hi € S, the family (hi)ieI is summable, and T hi = 1. By hypothesis, we can
find orthogonal idempotents éi = sihi € Shi with © é; = 1. Define @ X —> M by
o, = Es,qu. We claim that
X =Me (o (X nKer p))
i€l
Once this is established, (1) follows.

First note that (<pi) is summable; let ¢ = & ¢.. Next "DilM = &; indeed

iel
p(m) = &, qu (m) = & h(m) = & &m) = &(m)
for every m € M. Hence
‘P]M=(E‘Pi)|M=E gi=1M'

Thus X = M @ Ker ¢. Now
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%% o 885 ﬂJ) g 88

Using this, one can check that Ker ¢y = ® Xi N Ker o,. o
iel

In the following lemma, we list a few facts about summable families in S, which
will be needed in the proof of the main theorem.

Lemma 3.23. (1) If (gj)jEJ and (f.

i)ieI are both summable, then so is (gjfi)J « 1 (and

consequently the order of summation © T gjfi can be interchanged).
ji

(2) If (g;); ¢1 18 summable, and (fi)iel is finitely valued (in the sense that {f,(m) : ieI}
is finite for each m € M), then (g;f), ¢1 i summable.
(3) If (8;);¢1 and (fi)iel are both summable and g, = f, (modulo A) for all i€l, then
Lg=X fi‘
PROOF. For m € M, let F(m) = {i : f;(m) # 0} and G(m) = {j: gj(m) # 0}.
(1) 1 gjfi(m) # 0, then f(m) # 0 and hence i € F(m), as well as j € G(f;(m)). Since
G(f(m)) ¢ U G(fy(m)), which is finite, gf; is summable.

keF(m) J

(2) Let {f(m):i€I} = {uy, .., 0}, v; € M. If gf,(m) # 0, then

t
ieG (fi(m)) C kil G(uk), which is finite. Thus (gifi)iel

(3) Without loss of generality we may assume g =0, ie, fi € A. Consider any

is summable.

0#m e M. Then n Ker fi ge M, hence the intersection contains 0 # mr for

ieF(m)
suitable r € R. As f,(m) = 0 for all i ¢ F(m), we obtain mr € n Ker f. This proves
i€l
that N Ker fi < M. Since © fi vanishes on this submodule, & fi € A. )

iel
Now we are ready to prove the main theorem of this section.

Theorem 3.24. Ewvery continuous module has the ezchange property.

PROOF. Using Theorem 2.37, Lemma 3.20, and the fact that quasi-injective modules
have the exchange property (Theorem 1.21), it suffices to establish the exchange
property for a square free continuous module M. Here we know that all idempotents
of S = S/A are central (Lemma 3.4), J = A and S is regular (Proposition 3.5).
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We establish the result by verifying (3) of Proposition 3.22. Let I be a set of
ordinals, and f; € S (ieI) be a summable family with & f, = 1. Since S is regular,
there exist o; € S such that f, = f.o.f, (modulo A). Let h, = af; then clearly (hi)iEI
is a summable family and the Hi are central idempotents in S.

Inductively, we define § = (1 - T &)h € Sf;. By induction, we see that the
i<k !

Ek are well defined, summable, and are orthogonal idempotents modulo A. By
Corollary 3.9, the 8 lift to orthogonal idempotents g, €S. Now
k_ ?1’(+ (z &)hk_ g +h ¥ &

i<k i<k
Then
1 i) f = )]Z{J fih,  (by (1) and (3) of Lemma 3.23)
=Zf (§+h, T &)  (by(2) of Lemma 3.23)
k i<k
=3 ( + 1 E &)
Y Ot e
=X T f &
kick K1
=X T f & (by(1)of Lemma 3.23).
i k>i
Let o. = T fk‘ Then
T ki
1=Y p g E @
. &

Thus ¥ g;¢, & = 1 + x for some x € A, so

1 1
S(+x) gpug=1=Sgugl+x)
1 1

SoM = e gM, and
1
M=(1+x)"M=e(1+xgM
1

Let (ei)ieI be the natural projections of M with respect to the decomposition

M=eo(1 + x)_lgiM. Since and ¥ (1 + x)_lgignié; = 1, we get
1

=(1+ x)_lgitpigi € Sf, for all i € I. Thus (3) of Proposition 3.22 holds and M has

the exchange property. o
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Corollary 3.25. Directly finite continuous modules have the cancellation property.

PROOF. A directly finite (quasi—)continuous module has the internal cancellation
property (Theorem 2.33). The result then follows from the previous theorem and
Proposition 1.23. ]

Quasi—continuous modules, in general, do not have the exchange property, nor
the cancellation property.

Examples 3.26. (1) A quasi—continuous directly finite module which fails to have the
cancellation property: Swan [62] (Theorem 3) gives the well known example of a
commutative domain R with a stably free projective module P which is not free, in
fact Pe R v Rn+1 but P k R"™. Thus RR does not have the cancellation property.

Since RR is uniform, it is quasi—continuous and directly finite.

(2) A quasi—continuous directly finite module which fails to have the (finite)
exchange property, but still has the cancellation property: The ring I of integers
(Fuchs [72], p. 210).

(3) A non—continuous, quasi—continuous directly finite module which has the
exchange property, and therefore the cancellation property: Any local commutative
domain R which is not a field (cf. Warfield [72]).

COMMENTS

Proposition 3.5 was first proved for injective modules by Utumi [59], and later
generalized to quasi-injective modules by Faith and Utumi [64]. For an injective
module M, Wong and Johnson [59] proved that if A = 0, then S is right self-injective.
This result was generalized by Osofsky [68c], who proved that if M is quasi—injective,
then S/A is right self-injective (Theorem 3.10) and orthogonal idempotents modulo A
lift (cf. Corollary 3.9).

For a right continuous ring R, Utumi [65] proved J(R) = A(R) and that R/A is
right continuous. Mohamed and Bouhy [77] generalized this result to continuous
modules (Proposition 3.5 and Theorem 3.11). The endomorphism ring of a
quasi—continuous module was studied by Jeremy [74]; most of his results are stated
without proof. Proposition 3.12 and Corollary 3.13 are due to the authors. Their
application to right quasi—continuous right non-singular rings (Remark (2))
generalizes the decomposition obtained for right continuous regular rings by Utumi
[60]; cf. Goodearl [79], Theorem 13.17). A related decomposition for arbitrary right
continuous rings is discussed in Birkenmeier [76].
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Most of the material in Section 2 is taken from Miller and Rizvi [83].
Theorem 3.17 was first proved for quasi—injective modules by Bumby [65]. Theorem
3.16 is due to Mucke [88]; the special case of indecomposable M s appears in Miiller

and Rizvi [84].

Proposition 3.22 is due to Zimmermann-Huisgen and Zimmermann [84]; the
special case of the finite exchange property goes back to Nicholson [77]. Theorem 3.24
is new, cf. Mohamed and Miiller [88b]. The finite exchange property of continuous
modules was known before and follows from Warfield [72] and the information
concerning the endomorphism ring in Section 1. Corollary 3.25 and the Examples 3.26
are taken from Miiller and Rizvi [83].



CHAPTER 4
QUASI DISCRETE MODULES

In this, and the following chapters, we will study modules with properties that
are dual to continuity and quasi—continuity. Such modules will be called discrete and
quasi—discrete, respectively. This terminology, which is new, is chosen because these
modules decompose into direct sums of indecomposables: a quasi—discrete module M
has a decomposition, unique up to isomorphism, M = e Hi’ where the Hi are hollow;

moreover if M is discrete, then the H, have local endomorphism rings.

In several cases we determine when, conversely, a direct sum of hollow modules
is quasi—discrete. In full generality this question is open. In contrast to the fact that
every quasi-injective module is continuous, projective modules need not be
quasi—discrete; we shall see that this implication remains intact if and only if
projective covers exist.

1. DEFINITIONS AND BASIC RESULTS
Dual to the notion of essential submodules, we have

Definitions 4.1. A submodule A of a module M is called small in M (notation
A <<M)if A + B # M for any proper submodule B of M. A module H is called
hollow if every proper submodule of H is small.

The sum of all small submodules of a module M is equal to the Jacobson radical
of M, and will be denoted by Rad M. Thus an arbitrary sum of small submodules of
M is small if and only if Rad M << M. A finite sum of small submodules of M is
always small in M.

Examples of modules that are equal to their radicals are C; and Q as modules

over I; the first is hollow while the second one is not.

There are two types of hollow modules H:
(i) H # Rad H; in this case H = xR holds for every x ¢ Rad H. Such modules, for
obvious reasons, will be called local modules. These modules are dual to uniform
modules with non—zero socle.
(i) H = Rad H; such modules are dual to uniform modules with zero socle. It is
obvious that they are not finitely generated, and may have a complicated structure,
even over commutative noetherian rings (see Chapter 5).
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The following lemma contains some facts about small submodules which will be
used freely.

Lemma 4.2. Let A, B and C be submodules of M:

(1) IfA << Band B <C, then A << C;

(2) IfA<<M,A<BandBc®M, then A << B;

(3) IfA << M and ¢ : M —> N is a homomorphism, then pA << M.

PROOF. (1) Let A+ D=C. Then A + BnD = B, and hence Bn D = B since

A << B. This implies B*g D andso A <D. ThusD = C. .

(2) WriteM=*BeB,andletA+D=B. Then A + D+ B = M. Since

A << M,DeB = M, consequently D = B.

(3) We may assume that o is onto. Let A + D = N. Then
M=¢N=¢16A+¢D=A+ 4D

Since A << M, M = ¢_1D, and so
N = ¢M = ¢¢'D < D.

Hence D = N. o

Definition 4.3. Let A and P be submodules of M. P is called a supplement of A if it
is minimal with the property A + P = M. L is called a supplement submodule if L is
a supplement of some submodule of M.

Complement submodules exist by Zorn’s Lemma; in fact if A, B < M with
AnB = 0, then B is contained in a complement of A. However, supplement
submodules need not exist, e.g. no non-trivial submodule of ”11 has a supplement.

Definition 4.4. A module M is called supplemented if for any two submodules A and
B with A + B = M, B contains a supplement of A.

The following lemma provides a criterion to check when a submodule is a
supplement.

Lemma 4.5. Let A and P be submodules of M. Then P is a supplement of A if and

onlyifM=A+Pand AnP << P.

PROOF. Assume that P is a supplement of A, andlet P = AnP + D. Then
M=A+P=A+AnP+D=A+D.

Minimality of P then implies D = P. Hence AnP << P.
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Conversely, assume the condition, and let M = A + Q with Q < P. Then
P=Q + ANnP,and since AnNP << P, P =Q. Therefore P is a supplement of A.
o

Recall conditions (C,), (C,) and (Cj), and note that (C,) is equivalent to the

following condition:
(Ci) For every submodule A of M, there is a decomposition M = M, e M, such that
A<M, and A + M, <* M.
The conditions (C;) dualize as follows, respectively:
(DI) For every submodule A of M, there is a decomposition M = M, ® M,, such that

MlgAandAnM2<<M;

(Dy) If A < M such that M/A is isomorphic to a summand of M, then A is a

summand of M.
D,) If M, and M, are summands of M with M, + M, = M, then M, n M, is a
3 1 2 1 2 1 2

summand of M.

First we investigate some basic properties of the conditions (D).

Lemma 4.6. Let M be a module with (D,). Then
(i) if M, M2 ® M, then any epimorphism M, L>> M, splits; and
(ii) M has (D3).
PROOF. (i) Write M = M, ® M;. Then
M, 2 M, /Ker {2 (M, ® M,)/(Ker f M) = M/(Ker { ® M,).
*
Consequently Ker f ® Ml’ and hence Ker { is a summand of Ml'

*
(ii) Let A, B ®M with A + B=M, and write M = A ® A . Then
A ¥(A+B)/A¥B/ANB.
Hence A n B ¢® M by (i) o

Lemma 4.7. Any summand of a module M with (Di) also satisfies (Di)‘
PROOF. Straightforward. o
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Proposition 4.8. The following are equivalent for a module M:
(1) M has (Dy);

(2) Every submodule A of M can be written as A = N ©S with N ®M and
S << M;

(3) M is supplemented and every supplement submodule of M is a summand.

PROOF. (1) # (2): M has a decomposition M = M; ® M, with M; < A and

An M2 << M. Then A = M1 @ An M2, and the result follows with N = M1 and
§S=AnM,.

(2) » (3): Let M = X + Y; we show that Y contains a supplement of X. By
assumption, we may assume Y ®M. NowXnY-= Y1 ® S such that Y1 ®M and

S<< M. Since Y ¢(® M, S << Y. Write Y = Y, @ Y,, and let 7 denote the
projection Y1 ® Y2 —>> Y2. Then X nY = Y1 eXnYnY,, and
XnY,=XnYnYy,=n(XnY)=n(Y, +S5)=rS.
Hence X n Y2 << Y2. Now
M=X+Y=X+Y,+Y,=X+Y,,
50 Y2 is a supplement of X.

Now let P be a supplement submodule of M. Then there exists K < M such
that P is minimal with the property K + P = M. Since P = L ® T with L ¢® M and
T << M, M = K + L. Then minimality of P implies P = L.

(3) # (1): Let A < M. Then A has a supplement B and B has a supplement M,

such that M1 < Aand M1 ®M. Write M = M1 ® M2. Then
A= M1 oAnN M2
Also M = M, + B and so
A= MI + AnB.
Let v denote the projection M1 ® M2 —_—>> M2. Then
ANM, = rA = (A n B)
Since B is a supplement of A, A N B << M and hence A n M2 << M. Thus M has
(Dy). o

Corollary 4.9. An indecomposable module M has (DI) if and only if M is hollow.

s}
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Definition 4.10. A module M is called discrete if it has (D;) and (D,); M is called
quasi-discrete if it has (D,) and (D).

It is clear that every hollow module is quasi—discrete. Summands of (quasi-)
discrete modules are(quasi—) discrete (Lemma 4.7).

The following is dual to the corresponding result for quasi—continuous modules
(see Theorem 2.8).

Proposition 4.11. A module M is quasi—discrete if and only if M is supplemented, and
M= X oY for any two submodules X and Y of M which are supplements of each
other.

PROOF. "Only if": By Proposition 4.8, M is supplemented and X, Y c® M. Hence
XnY c®Mby (D,). Since XY <<M,XNY=0.

"If': M has (D,) by Proposition 48. Let A, B ¢* M such that M = A + B.

Now B contains a supplement B’ of A which is a summand of M. Thus
ANB’ << B’ < M, consequently A N B’ << A. Thus A is a supplment of B’,
hence M = A @ B’ by hypothesis. ThenB=B’®ANB,soANB ¢ B. o

2. DECOMPOSITION THEOREMS
We show that any quasi—discrete module M is a direct sum of hollows, and that
these summands can be arranged to obtain a decomposition M = M, M, such that

M1 has small radical and M2 is equal to its radical.

Lemma 4.12. Let A be a submodule of a quasi—discrete module M, and B a
supplement of A. If C is a supplement submodule of M contained in A, then
CNB=0andCeBc®M.

PROOF. B and C are summands of M (Propos1t10n 4.8). Writing M = cecC we
getA—AnC ® C, hence M = AnC + C + B. ByProposmon48AnC
contains a supplement D of C + B, which is a summand. Since D ¢ C,
DeCc®M. NowM = (D ® C) + B, a sum of two summands, so (D ® C) n B M
by (D). However

(DeC)nB<ANB << M.
Hence (Do C)nB =0,and M=De Ce B. o



60

Corollary 4.13. In a quasi—discrete module M, the union of any chain of summands is
a summand, and local summands are summands.

PROOF. Let {A_} be a chain of summands of M, and let A = U A Let B bea
a

supplement of A. Then A an B = 0 for every o by Lemma 4.12, and hence
ANnB =0,s0M = A ®B. The last statement follows by Lemma 2.16. o

Proposition 4.14. Let N be a summand and H a hollow summand of a quasi-discrete
module M. Then either N + H(®M and NN H=0, or N+ H= N © S with
S << M and H is isomorphic to a summand of N.
PROOF. Let L be a supplement of N + H. Then N n L = 0 by Lemma 4.12. Now
M =N + L + H. We consider the two possible cases:
(i) H¢{ NeL: Then H is a supplement of N + L, hence N n H = 0 and
NeHc®M by Lemma 4.12.
(i) H<NeL:Then M=NeLand

N+H=Ne(N+H)nL=NeS§,
where S = (N + H) n L << M since L is a supplement of N + H. Write
M =Heo H’. Then

M=N+H+H =N+S+H =N+ H".
Let N’ be a supplement of H’ contained in N. Then M = N’ © H’ by Proposition
4.11. Hence H~ N~ ®N. o

We are now ready to prove the main theorem of this section.

Theorem 4.15. Any quasi—discrete module M has a decomposition M = @ Hi where
i€l
each Hi is hollow. Moreover, such a decomposition complements summands, and hence
s unique up to isomorphism.
PROOF. By Theorem 2.17 and Corollary 4.13, M = e H, where the Hi are
iel
indecomposable. It follows by Corollary 4.9 that each H, is hollow.
Next we prove that the decomposition M = @ Hi complements summands. Let
iel
X be any summand of M. By Zorn's Lemma and Corollary 4.13, we get a subset J C I
maximal such that X n (e H) = 0, and Xe (e H) ® M. Write
jel el
M=Xe (o Hj) ® Y. The proof will be complete if we show that Y = 0. Assume
jeJ



61

that Y # 0. Since Y is quasi—discrete, Y contains a non—zero hollow summand H (by
what we have already proved). Consequently M = T © H where X o ( @ Hj) <T. If
jeJ
for some i € I, T + Hi ® M, then T n H, = 0, and we get a contradiction to the
maximality of J. Thus T + Hi is not a summand of M for any i € I. It then follows
by Proposition 4.14 that for all i € I
T+Hi=Te>Si ; Si<<M

Consider any finite subset F ¢ I. Then T + (@ H,) # M, and

ieF
M=T$H=T+($ Hi)+H.
ieF
Hence H is a supplement of T + (© H;). But then Hn (@ Hi) =0 by Lemma
ieF ieF
4.12. Since this is true for any finite subset FCI, H = H n (® H) =0, a
i€l
contradiction. Therefore Y =0, and M =X o (® Hj)' o
jed

The following corollary is a consequence of Theorems 2.26 and 4.15.

Corollary 4.16. Any decomposition of a quasi—discrete module as a direct sum of
hollows s locally semi-T—nilpotent. o

The next proposition characterizes quasi—discrete modules with small radical.

Proposition 4.17. The following are equivalent for a quasi—discrete module M:
(1) Rad M << MV;
(2) Pvery proper submodule of M is contained in a mazimal submodule;
(3) M is a direct sum of local modules.
PROOF. (1) = (3): By Theorem 4.15, M = @ H, with each H, hollow. Since Rad
iel
Hi <Rad M << M, Rad Hi $ Hi' Hence Hi is local for all i € 1.
(3) = (2): Let A be a proper submodule of M. By Proposition 48, A=NeS§S
where N ¢® M and S << M. Now M has a decomposition M = @ Mj with each M :
jeJ
local. It then follows by Theorem 4.15, that this decomposition complements

summands. Hence M =Neo ( o Mk), for some subset K ¢ J. For a fixed a € K, it
keK

is clear that
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B=Ne(e M/)eRadM
kia k a

is a maximal submodule of M. Now
A=NeS<N+ Rad M < B.
Hence (2) follows.
(2) # (1): Trivial. o

Corollary 4.18. A quasi-discrete module M has a decomposition, unique up to
isomorphism, M = M1 ® M2, where M1 has small radical and M2 s equal to its

radical.
PROOF. By Theorem 4.15, M = e Hi with each Hi hollow.  Define
iel
J = {jeI : Rad Hj;éHj} and let K =1-1J. Let
M, = o H. , M.= o H,.
1750737 72 gek K
Since H ; is local for all j € J, M1 has small radical by Proposition 4.17. Now
RadM,= ® RadH, = ® H, =M,.
27 keK k™ pex k2
The uniqueness of the decomposition M = M1 ® M, follows from the uniqueness of

the original decomposition M = @ H,. 0
i€l

3. APPLICATIONS OF THE DECOMPOSITION THEOREMS
This section contains results which are dual to those in Section 4 of Chapter 2.
The proofs are greatly facilitated by the availability of the decompositon theorems.

Corollary 4.19. A quasi—discrete module M has the ezchange property if and only if

every hollow summand of M has a local endomorphism ring.

PROOF. By Theorem 4.15, M = '(:I Hi where each Hi is hollow and the
i

decomposition complements summands. The result now follows by Theorem 2.25 and

the fact that an indecomposable module has the exchange property if and only if it

has a local endomorphism ring (Warfield [69a]). o

Corollary 4.20. A directly finite quasi—discrete module M has the internal cancellation
property; and M has the cancellation property if every hollow summand of M has a
local endomorphism ring.
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PROOF. The first statement is a consequence of Theorems 2.27 and 4.15. The
second statement then follows from Proposition 1.23 and Corollary 4.19. o

Remark. The requirement that the endomorphism ring of each hollow summand is
local, is automatically satisfied if M is discrete (see Corollary 5.5). Thus a discrete
module has the exchange property, and a directly finite discrete module has the
cancellation property.

In the following we discuss some properties of quasi—discrete modules which are
analogous to those given in Lemma 2.30, Theorem 2.31 and Corollary 2.32.

Proposition 4.21. Let A be a submodule of a quasi—discrete module M. If P, and P2

are supplements of A, then P1 and P2 are perspective; in particular P1 v P2.

PROOF. Let X be a supplement of P1 contained in A. Then M =X e P1 by

Proposition 4.11. Hence A =X e An P,. Since A n P1 << M,
M=A+P2=X+AnP1+P2=X+P2.

It follows by Lemma 4.12 that X n P, = 0; andso M = X @ P2. o

2

Lemma 4.22. Let M be a quasi—discrete module. IfM = X Mi is an irredundant

iel
sum of indecomposable submodules Mi’ then M = Mi'
i€l
PROOF. The irredundancy of the sum X Mi implies that no Mi is small in M.

iel
Hence Mi is a hollow summand of M for every i € I, by Proposition 4.8 and Corollary
4.9.
Let F be a finite subset of I and let K be a subset of F maximal such that
L M is direct and a summand of M. Assume that K # F, and let je F — K. By
ieK
maximality of F and Proposition 4.14

® Mi+M'= -} Mies

ieK ieK
where S << M. However, this implies M = T Mi’ which is a contradiction to the
i#j
irredundancy of the sum. Therefore K = F, and consequently X Mi is direct.
iel

s]
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Lemma 4.23. If A ® B is quasi—discrete and X < B, then any homomorphism
$: A—> B/X lifts to a homomorphism ¢ : A —> B. In particular, any
epimorphism B —>> A (or A —>> B) splits.
PROOF. Let 7 denote the natural homomorphism B —>> B/X and define
n:M=AeB—> B/X by

n(a + b) = ¢(a) + =(b).
Let K = Ker 7. For an arbitrary element a € A, ¢(a) = =(b) for some b € B, and
hence a — b € K. Therefore A < K + B, and consequently M = K + B. Let C be a
supplement of B contained in K. Then M = C ® B by Proposition 4.11. Let p denote
the projection C® B —>> B, and ¢ = p|A. Then for every a € A,

¢(a) = n(a) = n((1-p)(a) + p(a)) = n(p(a) = =(p(a)) = = ¥(a).

Hence 7¢= ¢. The last statement is obvious. o

Theorem 4.24. Let A and B be summands of a quasi-discrete module M. If
A/X v B/Y where X << A and Y << B, then A ¥ B.
PROOF. Since A is quasi—discrete, A = @ Ai where each Ai is hollow (Theorem
iel
4.15). Let A = A/X and B = B/Y. Let 0 be an isomorphism of A onto B. Then
B=% 0Ki. Since 0 is an isomorphism and X << A, T 0Ki is irredundant. Let C;
iel iel
be the full inverse image of 0Ki in B; then it is clear that B = ¥ C, and that the
i€l
sum is irredundant.
By Proposition 4.8, C; = B, @ S, where B, ® B and S, << B. Since T, ¢ &,
Ci is hollow, and hence Ci = B, or C, = 5, However Ci = 5, would imply
Ci = Si + Y << B, which is a contradiction to the irredundancy of the sum ¥ Ci‘
iel
Thus C, = B and hence C,=B,+Y.

Then
B=X C =732 (Bi+Y)= I B +Y
i€l i€l iel
Since Y << B,B= % Bi; and it is clear that the sum is irredundant.
iel

Next we show that B, is hollow. Assume that B; = L + N. Then Ei =L +N
As Bi is hollow, B'i =T or fB'i = N. Let us assume that B'i = L. Then
Bi+Y=L+Y. Write B = Bi$Di. Then B = BiﬂiDi = Bi +Y + Di=
L+Y+ D, =LeD,since Y <<B. This implies that B; = L. Similarly Hi =N

implies Bi = N. Thus Bi is hollow.
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It now follows by Lemma 4.22 that B = @ Bi' Since Ai and Bi are hollow

iel
summands of M, it follows by Proposition 4.14 that Ai ¥ B; or Ai + Bi is direct and
is a summand of M. In the latter case Ai ® B, is quasi—discrete. Then by Lemma
4.23, there exists a homomorphism @ Ai —> B, such that the following diagram is

commutative

A, >>7¥i
‘Pi l J/g
Bi >>]§i

Since Bi is hollow, a is onto. Then o splits by Lemma 4.23, consequently o is an
isomorphism since Ai is hollow. Thus one has Ai ¥ B, in either case. Hence
A=o Ai v~ e B.=B o
iel i€l

The following immediate consequence should be compared with Corollary 2.32.

Corollary 4.25. Let M be a quasi—discrete module. Let N1 and N2 be submodules of
M, with supplements P1 and P2 respectively.  If M/N1 v M/N2, then P1 v P2.
o

Definition 4.26. A module M is said to have the lifting property if for any index set I
and any submodule X of M, if M/X = e Ai’ then there exists a decomposition

i€l
M=MO ® (izI Mi) such that (i) Mo < X, (ii) Mi = Ai’ and
(i) X n(e M) << M.
. 1
i€l

If M has this property with respect to small submodules X of M, we say that M has
the small lifting property. For n € N, the n—lfting property (n—small lifting property)
will mean that M has the lifting property (small lifting property) for index sets with
cardinality n.

If X is a small submodule of M, it is clear that M| = 0 and that (i) above is

automatically satisfied. Thus the small lifting property amounts to the requirement
that every decomposition of M/X can be realized by a decomposition of M. It



66

is also clear that the 1-lifting property is equivalent to (Dl)‘ In the following we

prove that the 2-lifting property is equivalent to the (full) lifting property.

Lemma 4.27. Let M be a module with (Dl)' Then the following are equivalent:
(1) M has (D3),
(2)  If for summands M, and M, of M\, M = M; + M, and M1 N M, << M, then
M, n M, =0,
(3)  If for summand Mi(i e)ofM,M= % M; and Mj N X M <<M for every j,
iel i4j
then T M, is direct.
iel
PROOF. (3) implies (2) trivially. We show that (2) implies (1) and (1) implies (3).
Assume (2), and let A, B c® M be such that M = A + B. By Proposition 4.8,
B contains a supplement N of A; and N is a summand of M. Now M = A + Nand A
NN << M imply A n N = 0 by hypothesis, so M = A ® N. Then
B=BnM=Bn(AeN)=AnBeN,
hence A n B ¢® M. Thus M has (D3) and (1) follows.
Assume (1), and let M = T M; with the given conditions, and without loss of
iel
generality assume that each Mi # 0. We first note that the sum X M, is
iel
irredundant. Indeed, if M = T Mi for some j € I, then Mj = Mj n M
i
M j ny Mi << M, consequently Mj = 0, a contradiction. Next we observe that M ]
i#]
is a supplement of Mi for every j € J, since Mj ng Mi << Mj by Lemma 4.2.
i#] i#]
Now consider a finite subset F C I, and let K  F be maximal such that & M,
ieK
is direct and is a summand of M. We claim that K = F. Suppose not; and let j € F —
K. Since M has (D,) and (D3), M is quasi—discrete. Since Mj is a supplement of

L M, and I M, < T M, it follows by Lemma 4.12 that T M, + M. is direct

i#j ieK i#j ieK J

and is a summand of M, in contradiction to the maximality of consequently - M, is
iel

direct. o
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Theorem 4.28. The following are equivalent for a module M:

(1) M is quasi—discrete,

(2) M has the lifting property,

(3) M has the 1-lifting property and the 2-small lifting property.

PROOF. (2) implies (3) trivially. We show that (3) implies (1) and (1) implies (2).
Assume (3). The 1-ifting property implies that M has (DI)' Now let A,

A, ¢® M such that M = A; + Ay and A; N A, << M. Wiite X = A n A, and

M = M/X. Then M = Kl ® Kz, and it follows by the 2-small lifting property that

M= M,; @ M, such that A; = M, (i = 1,2). Therefore A; = M; + X; and since

X << A, by Lemma 4.2, A; = M; (i = 1,2). Hence A; N Ay = 0. Then M has (D,)

by Lemma 4.27.

Assume (1). Let X ¢ Mand M=M/X = e A, By (D), M= M, © N where
i€l

M, ¢XandX =XnN<<M AsN¢®M X <<N. Now

N/X" % (M, @ N)/(M, @ X ) = M/X = o A
Let Ni be the full inverse image of Ai in N. Again by Proposition 4.8 , N, = Mi ® Si
where M, c® N and S, << N. Then A, =N, = M, + 5. As 5, << N by Lemma 4.2

and A, N, Si << A;; consequently A; = Mi‘ Thus N= e Mi’ which implies that

i€l
* *
N= X Mi + X . Therefore N = T Mi since X << N. Since N is quasi—discrete
iel iel
*

and M. n & M, ¢ X <<M, T Mi is direct by Lemma 4.27. Hence

I i iel
M=M e(e M), and (2) follows. o

° Vier !

4. DISCRETENESS AND PROJECTIVITY

We start by summarizing properties of relative projectivity which are analogous
to those in Section 1 of Chapter 1. We then discuss when (quasi—)projective modules
are discrete. We finally investigate when quasi—discreteness passes down from a
cover.

N
Definition 4.29. A module N is said to be //
A-projective if for every submodule X of A, any /Y 3

homomorphism ¢ : N —> A/X can be lifted lé-/
to a homomorphism % : N —> A. A %A/ X
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A module P is projective if P is A—projective for every R—module A. A module
M is called quasi—projective if M is M—projective.

The following immediate consequence will be used frequently:

Lemma 4.30. If N is A—projective, then any epimorphism A i>> N splits. If, in
addition, A is indecomposable, then f is an isomorphism. 0

The following results concerning A—projectivity will be stated without proofs.
The proofs are either dual to, or can be obtained by similar arguments as the proofs of
the corresponding results in Chapter 1.

Proposition 4.31. Let N be A—projective. If B < A, then N is B-projective and
A /B-projective. o

Proposition 4.32. A direct sum @ Ma is A—projective if and only if M a 18
acl

A-projecti. for every a € A. o

n
Proposition 4.33. A module N is (@ A;)-projective (n € N) if and only if N is

1=

Ai—projectz've, i=12,.n o

The conclusion of Proposition 4.33 does not extend to infinite direct sums, as is
shown by the following:

Example 4.34. Let I be an infinite set, and let Ai =T for every i € I. Trivially Q is

A,-projective. Obviously there exists an epimorphism e Ai —>> (. It does not
iel
split since Qll is not projective. Hence ¢ is not (@ Ai)—projective by Lemma 4.30.
iel
Note that it also follows by Proposition 4.31 that Q is not ( IT Ai)—projective.
iel

In case N is finitely generated, Proposition 4.33 extends to infinite direct sums.
Proposition 4.35. Let I be an arbitrary set. If N is finitely generated and Ai—projective

for everyi €1, then N is (@ Ai)—projective,
i€l
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PROOF. Let X ¢ @ A. Then (@ A)/X = T A, where A; = (A, + X)/X. For

iel iel i€l
any homomorphism ¢ : N —> T Ii’ Im < T Ii for some finite F ¢ I. Then
iel ieF
Proposition 4.33 applies to the finite direct sum o Ai and the result follows.
ieF
o
We also have the following corollaries to Propositions 4.32 and 4.33.

Corollary 4.36. A direct sum of projective modules is projective. o

n
Corollary 4.37. A finite direct sum @ Mi s quasi—projective if and only if Mi is
i=1

Mj—projective i, j =1, 2 .. n). M" is quasi—projective if and only if M is

quasi—projective. o

Recall the hierarchy:
Injective # quasi-injective # continuous » quasi—continuous = (C,).

In the present situation, we have
Projective 3 quasi—projective +t discrete 3 quasi—discrete =2 (Dl)'

In fact, a projective module need not have (Dl); eg. Iy.

Proposition 4.38. Any quasi—projective module M has (D2).

PROOF. Let M —>> M’ be an epimorphism with M’ ¢® M. Then M- is

M-projective by Proposition 4.32; hence f splits by Lemma 4.30. o
Now we characterize quasi—projective modules which are discrete.

Proposition 4.39. A quasi—projective module M is discrete if and only if every
submodule of M has a supplement.
PROOF. If M is discrete, then it has (Dl); hence M is supplemented by Proposition
4.38.

Conversely, assume that every submodule of M has a supplement. We first

show that M is supplemented. (Note that, in general, if every submodule of a module
N has a supplement, N need not be supplemented; cf. Appendix).
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Let M = A + B. We show that B contains a

supplement of A. By assumption A has a /I
supplement P. Then M = A + P and / 1
ANnP << P. Let v and 7 be the natural g/
homomorphisms M —>>  M/A  and M

B —>> M/A, respectively. Since M is / //
B-projective by Proposition 4.31, there exists // /;
f: M —> B such that of = v. Let p= v| %
P (24
B—r M/A

and g = f|p. Then mgP = uP = M/A, and

hence M = A + gP. It is easy to check that
A ngP = g(ker p). Sincekerp=ANP << P,
g(ker ) << gP by Lemma 4.2. Hence A ngP << gP and consequently gP is a
supplement of A contained in B.

Next we prove that every supplement submodule of M is a summand; then it
follows by Proposition 4.8 that M has (Dl)' Suppose that A is a supplement

submodule of M and B is a supplement of A, and use the same diagram. Since
7mfA = vA =0, fA ¢ A. Then
M=ifM+A=f(A+B)+A=fA+fB+A=1B+A.
Then minimality of B implies fB = B, hence M = B + kerf. Since kerf < A, the
minimality of A implies kerf = A. Therefore
kerf = A = ker v = ker 7f.
Hence 7 is a monomorphism on fM = B; consequently AN B = 0. Hence M = A @ B.
Since M has (D,) by Proposition 4.38, M is discrete. o

Every module is a homomorphic image of a free (hence projective) module. An
epimorphism P L>> M with P projective, is called a projective cover of M if ker
n << P. The notion of a projective cover is dual to that of an injective hull.
However, projective covers need not exist; for instance Ql does not possess a projective

cover. If a module M has a projective cover P, then P is unique up to isomorphism.

A ring R is right (semi) perfect if every (finitely generated) R-module has a
projective cover. These rings were introduced by Bass [60], and were studied by many
authors. For a detailed survey of these rings we refer the reader to Faith [76a] and
Anderson and Fuller [73].

In particular, a ring R is right semiperfect if and only if R/RadR is semisimple
and idempotents modulo RadR can be lifted. Thus right semiperfect rings are left
semiperfect and vice versa. Also we note that for a ring R to be semiperfect it
suffices that every simple R—module has a projective cover.
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Lemma 4.40. Let M = A + B. If M/A has a projective cover, then B contains a
supplement of A.

7

PROOF. Let P —>> M/A be a projective P
over. Let 7 denote the natural homomorphism //

B —>> M/A. Since P is projective, there g 7/ M
exists a homomorphism g : P —> B such that y 4

7g = u. As in the proof of Proposition 4.39, we B% YA

get that gP is a supplement of A contained in
B.

Theorem 4.41. The following are equivalent for a ring R:
(1) R is a right (semi) perfect,
(2)  Ewvery (finitely generated) quasi—projective R—module is discrete,
(3) PEvery (finitely generated) R—module is supplemented,
(4) Ewvery (cyclic) free R—module has the property that every submodule has a
supplement.
PROOF. (1) » (3) by Lemma 4.40, (3) 3 (2) by Proposition 4.39, and (2) » (4)
trivially.
Assume (4), and let M be a (cyclic) R-module. Then there exists an
epimorphism F —L->> M where F is a (cyclic) free module. Since F has (Dl) by

Proposition 4.39, F = F1 ® F2 with F1 < ker 7 and F2 n ker 7 << F2. Then it is

clear that n|p : F, —>> M is a projective cover of M. Hence R is right (semi)
2
perfect. o

Corollary 4.42. A ring R is semiperfect, if and only if RR is discrete, if and only if
every right ideal of R has a supplement. o

Mares [63] defined a module P to be semiperfect if P is projective and every
homomorphic image of P has a projective cover. The following is an immediate
consequence of the definition and the proof of Theorem 4.41.

Corollary 4.43. A projective module P is semiperfect, if and only if P is discrete, if
and only if every submodule of P has a supplement. )
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We now give a characterization of semiperfect modules which is analogous to
that of a semiperfect ring; this characterization shows that the discreteness of a
projective module can be characterized by a weaker version of the lifting property (see
Theorem 4.28).

Theorem 4.44. A projective module P is semiperfect if and only if

(1) RadP << P, (2) P/RadP is semisimple, and (3) decompositions of P/RadP lift
to decompositions of P.

PROOF. "If" : We first show that if P is any module with (1), (2) and (3), then
every submodule of P has a supplement. Let A be a submodule of P. Then by (2)
P =X o B where B ¢ P (P = P/RadP), and by (3) P = P, @ P, such that P, = &

and F2 = B. Then
P=P19P2=P1+RadP+P2=A+RadP+P2,
and by (1) we get P = A + P,. Now
ANnP,<An(P,+ RadP) = An (B + RadP) < RadP.
Hence A n P, << P by (1); thus P, is a supplement of A. (In fact we have proved

that every submodule of P has a supplement which is a summand). It now follows by
4.43 that a projective module with (1), (2) and (3) is semiperfect.

Conversely, assume that P is semiperfect. Then P is discrete by Corollary 4.43.
Using Corollary 4.18 and the fact that a non—zero projective module is not equal to its
radical, we get RadP << P. Thus (1) holds.

Next we show that (2) holds for any module P whose submodules have
supplements. Indeed, let K be a submodule of P. Then K = A for some submodule
A < P. Let B be a supplement of A. Then P = A + B with AN B << B. Thus
A N B << P and hence A n P < RadP. Therefore P = A e B, and (2) holds.

Finally (3) holds by Theorem 4.28. o

Corollary 1.14 may be dualized as follows: If M has a projective cover
P -I>> M, then M is quasi—projective if and only if ker 7 is invariant under every
endomorphism of P (see Wu and Jans [67]); in fact the same conclusion holds if P is
only a quasi—projective cover.

A dual statement to the equivalence of (1) and (3) in Theorem 2.8 is not true in
general, even in case M has a projective cover; this is due to the fact that projective
modules need not be discrete. However we have the following analogous result.
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Proposition 4.45. Let N be quasi—discrete; and let N L>> M be an epimorphism with
a small kernel. Then M is quasi—discrete if and only if ker { is invariant under every
idempotent of End N.

PROOF. Assume that M is quasi—discrete and let e be an idempotent of End N.
Write N = A; ® A) where A; = eN and A, = (1-e)N. Then M = fA, + fA,, and

by quasi-discreteness, M = B; e B, with B, < fAi i = 1L2). Hence
N=1'B +f'B, Nowf'B =A nf'B +kerf(i=12). Sincekerf<<N,
- _ 1 1
N=AjeA,=A nf B eA,nf B,
Thus A; = A; N f_ lBi’ and so A, < f lBi, and consequently fA; = B, (i =1,2). Hence
M= fA1 ® fA2, which implies that e ker f < ker f. (Note that this direction of the

proof does not require N to be quasi—discrete!)
Conversely, assume that ker f is invariant under every idempotent of EndN. Let
A be an arbitrary submodule of M. Since N has (D,),

N=XeYwthX<f AandYnflA<<N.
Then f 1A = X ® S where S = Y n { YA, Since { is onto,

A=f1A =X + 1S,
Now the hypothesis on kerf yields fX ®Mand A = fX @ fS. Since fS << M by
Lemma 4.2, M has (D,).

Note that if A ¢® M, then fS << A, so A = fX. This shows that every
summand of M is the image of some summand of N. Now let B, and B, be

summands of M such that M = B, + B,. Then there exists C; ¢® N such that
fC; = B, (i = 1,2). Thus

N=C, + Cy + kerf = C; + C,
since kerf << N. Since N has (D,), C; n C, c® M. Hence

N=C{eC;nC,eCy
where C; = C{ @ C; n C, (i = 1,2). The hypothesis on kerf yields

M = {C; @ f(C; n C,) @ £(C3).

®

Consequently B, n B, = f(C; n C,) c” M. Hence M has (D,). o

A quasi—projective module which has a projective cover, need not be projective.
The following example shows that a similar observation holds for a quasi-discrete
module with a discrete cover.
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Example 4.46. Let R be a discrete valuation ring and let K be its quotient field. As
R-modules, K is indecomposable and discrete, K/R is hollow (hence quasi—discrete)
but not discrete, and K —>> K/R is a cover.

5.  QUASI-DISCRETENESS OF DIRECT SUMS

By Theorem 4.15, every quasi—discrete module is a direct sum of hollow
modules. According to Lemma 4.23, these hollow modules are relatively projective.
We shall investigate now when, conversely, a direct sum of relatively projective hollow
modules is quasi—discrete.

Lemma 4.47. Let M =S e T = N + T where S is T—projective. Then M =S5 e T
where S’ < N.
PROOF. The hypothesis gives the following commutative diagram

S/
/
Ve

L
T——S>M/N

Let " = {x—¢(x):x€S}. Then S’ <NandM =S5"eT. o

The conditions in the following theorem are strong, and hard to verify in
concrete cases. However, the theorem allows a unified approach to the three
subsequent corollaries, which represent the only general results known to—date.
Moreover, by Harada’s Theorem 2.25, (b) and (c) are each equivalent to the relatively
easily verifiable condition 1sTn, provided all M, have local endomorphism rings.

Theorem 4.48. LetM = o Mi with Mi hollow. Then M is quasi—discrete if and only
iel
if
(a) M, is M(I-i)—projective for everyi € I,
(b) © M, complements summands, and
iel
(c) every local summand of M is a summand.
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PROOF. The necessity of the conditions follows from 4.13, 4.15 and 4.23.
Conversely assume the conditions. Then (a) in conjunction with Propositions 4.31
and 4.32 yields that M(J) and M(K) are relatively projective for any two disjoint
subsets J and K of I. For any decomposition M = N @ L, (b) implies the existence of
a subset J of I such that N ® M(J) and L ¥ M(I-J); consequently N and L are
relatively projective. To derive (D), consider a submodule A of M. Tt follows from

(c) and Lemma 2. 16 that there estts a summand A" of M maximal such that A <A
Write M = A oA ; then A = Afeana” Then (D) holds if we show that

B=AnA" << M.

Suppose, to the contrary, that B 1s not small in M. Then M B + C with
C# M As before we get a summand C" of M maximal such that ol < C. By (b),
M= C ® M(J) for some subset J ¢ I. Since C # M, J # ¢. Consider k € J and let 7

denote the projection c'eM (J-k)eo M —>> M,. From M = B + C we get
M, =B + 7C; and since Mk is hollow, Mk =7B or Mk = 7C. Thus

M=B+kermor M = C + ker 7. Lemma 4.47 then yields M = D o ker*7r or
M=H e ker 7 where D < B, H < CandDngg H. In the first instance A e D

* *
contradicts the maximality of A , and in the second one C e H contradicts the
maximality of C . This proves B << M, and (D) holds.

Now we prove (D,). Consider summands N and T of M such that M = N + T.

Write M = S @ T. Then S is T-projective. Applying Lemma 4.47 again we get
M=3S5’ e T with 5 < N. It follows that N= S’ @ N n T, and consequently
NNTc®M. o

Corollary 449. Lete M = o M such that M is hollow with local endomorphism ring.
iel

Then M is quasi—discrete if and only if M, is M(I-i)-projective for every i € 1, and
IsTn holds.
PROOF. By Theorem 2.25, IsTn holds for M = e M, if and only if the

iel
decomposition complements summands, if and only if every local summand of M is a
summand. The claim now follows immediately from Theorem 4.48. o

Remark. The two conditions in Corollary 4.49 are independent, even if one assumes
that the Mi are relatively projective in pairs.
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For example, let R be a commutative noetherian complete valuation domain,
with quotient field K. Then R(m) is projective, but obviously does not satisfy 1sTn.
On the other hand K(m) trivially fulfills 1sTn, and K is quasi—projective (Lemma
5.11), but is not x® _ projective (cf. the proof of Lemma 5.12).

n
Corollary 4.50. Let M = o Mi where Mi 18 hollow and M j—projectz've whenever j # i.
i=1

Then M is quasi—discrete.

PROOF. We verify the conditions (a), (b) and (c) of Theorem 4.48.
(a) holds by Proposition 4.33.
We prove (b) by induction on n. It is obvious that (b) holds for n = 1.

Assume that (b) holds for n—1. Consider a nonzero summand A of M; let
n n
T ® Mi —>> M; be the natural projections. Since A < ® m A and each M, is
i=1 i=1

hollow, m A = M, for some k € {1,2,....n}. Thus M = A + ker Ty Set
N =ker m = ® M, Then M, is N-projective and M = A + N. Applying Lemma
itk
* * *
447 weget M = A o N with A < A, consequently A=A eANN.
Now AnNCCN-= o M, implies by induction hypothesis that
itk
N = A nNe M(J) where J ¢ {1, ..., k-1, k+1, ..., n}. Then
* *
M=A eN=A eAnNeM(J)=AeM(J).
Hence (b) holds.
It then follows that any summand of M is isomorphic to M(X) for some subset
K ¢ {1,2,...,n}. Thusif {Na: a € A} is a local summand of M, then A has at most n

elements, hence ® N c® M, and (c) follows. o
ach

Corollary 4.51. Let M = o Mi where each Mi 1s local and Mj—projectz've whenever
iel

j#1. Then M is quasi—discrete if RadM << M.

PROOF. We first note that M, is M(I-i)-projective by Proposition 4.35. Then,

applying Propositions 4.31 and 4.32, we get that M(J) is M(I-J)—projective for any
subset J C L.

Consider an arbitrary submodule A of M. Since M = M/RadM is semisimple,
M = A e M(J) for some subset J ¢ I. As RadM << M,
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M=A+MJ) and AnMQJ)<<M.
(We note in passing that, if B < A, then there exists K 3 J such that M = B + M(K)

and B n M(K) << M.) I;Iow relative projfctivity of M(J) and lVI(I - J) yields, by
Lemma 4.47, that M = A ® M(J) with A < A. Hence A=A o A n M(J). (In
fact this shows already that (D,) holds). Now if A c® M, then A n M(J) << A and

*
consequently A = A . Thus M = A e M(J), hence the decomposition complements
summands.

Let {A_: a € A} be a chain of summands of M and let A = U A _. Then
a aeh a

M= A + M(J) with A n M(J) << M. As noted earlier, for any a € A, there exists

Jy2J withM=A +M(J )and A nM(J ) << M; therefore M = A, o MJ ).

In particular A 0 M(J) = 0, and consequently A n M(J) = 0. Hence M = A o M(J),

and A ¢® M. It follows then by Lemma 2.16 that every local summand of M is a
summand.
The corollary now follows by Theorem 4.48. o

We complete these considerations by showing that the condition
"Rad M << M" of Corollary 4.51 can be replaced by a number of other conditions,
notably again by "lsTn".

Lemma 4.52. LetM = @ Mi with Mi local, and Mj—projective whenever j #1i. Let
iel

M= Rad M + X for some X < M, and m € Ma_ X for some o € 1. Then there
ezists a + B € I and a non—isomorphism f : M, —> Mﬂ such that f(m) ¢ X.
PROOF. Since Ma is local, Ma = uR for some u € Ma. Write u = z + x, with
z € RadM, x € X. There exists a finite subset F C I such that

z=3% z , zieRadMiandx= T ox o, xieMi.

ieF ieF

It is clear that @ € F, w = 2z + x_  and z + x, = 0 (i # ). Then
x, €Rad M; (14 o) and x , ¢ Rad M. Thus M = x R and x_, + y = x where
y= Z x;.  Let N = ® M, and define v : M, —> N/yxg by

at ieF a # i€F
u(xar) = yr. It is clear that v is well defined.
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By relative projectivity we get ¢ : Ma —> N

such that the diagram commutes. Therefore

M
axaj =, and consequently <p(xa) -y =yafor s e
o /
some a € x . Then ¢ Y, -
o(x)) +x, =y(l+a)+x,=y(l+a)+x,(1+a) M/
=(y+x,) (1+a)=x(1+a). N ——>>N/yx

Let m = x r. Then
a

@(m) + m = x(1 + a)r € X.
Since m ¢ X we conclude p(m) ¢ X. Let {m} be the set of projections of N onto

M, (i € F - {a}). Then for some f € F - {a}, T (m) ¢ X. Now
Ta¥ (x,) = wﬂ(y(l + a)) = 8 (a#zi)EF x (1 +a)) = xﬂ(l + a).

Consequently g w(x a) € Rad M 5 Thus { = g M,—>M v is the required

non-isomorphism. o

Theorem 4.53. Let M = @ Mi with Mi local and Mj—projective whenever j # 1. Then
iel
the following are equivalent:
(1) M is quasi—discrete;
(2) RadM << M;
(3) Ewery proper submodule of M is contained in a mazimal submodule;
(4)  The decomposition M = @ M, complements summands;
iel

(5)  {M;} is locally semi-T—nilpotent.
PROOF. The equivalence of (1), (2) and (3) follows from Proposition 4.17 and
Corollary 4.51.

We obtain (2) # (4) from Theorem 4.15, and (4) 3 (5) from Theorem 2.26. We
proceed to prove (5) 2 (2). Assume, contrary to (2), that Rad M + X = M with
X # M. Pick « € I such that Ma < X and select m € Ma — X. We shall obtain a

contradiction to 1sTn, by constructing, inductively, a set of distinct indicies
{a;:je N} ¢ I and non—isomorphism f,: M —> M such that o, = a and
J = ] aj O‘j +1 1
f .. fof;(m) ¢ Xforalln e .
Assume that the construction is done for j < n. Let I' = I -{ay,...a _;},

M’ = i:I' M, X’ =XnM’,andm’ =f , ..f(m) Since RadM; << M; ¢ M,
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M=RadM+X=RadMa +...+RadMa + Rad M’ + X = RadM’ + X.
1 n-1

Hence
M’ = RadM’ + X n M’ = RadM’ + X".
Clearly m’ € Ma — X’. Then Lemma 4.52 applies to M‘, and yields

n
a # oy 1€ I’ and a non-isomorphism fn : Ma _—> Ma such that
n n+1
f(m’) ¢ X’ Since Man+1 NX <M nX =X wehave f f ,..f(m)¢X
o

Corollary 4.54. A projective module is discrete if and only if it is a direct sum of local
submodules and the radical is small (equivalently the decomposition is locally
semi-T—-nilpotent). o

COMMENTS

Hollow modules were defined by Fleury [74a,b] and used by him, Rangaswamy
[77] and Varadarajan [79a,b] in the context of dual Goldie dimension. Supplements
appear first in Mares [63], and are studied, in their relationship with projective covers,
by Kasch and Mares [66] and Miyashita [66]. Further investigations, in arbitrary
modules and under various terminologies, are found in Zoschinger’s papers (from [74a)
onwards), Birjukov [78], Varadarajan [79a] and Hausen [82]. Discrete modules are
defined, under the name dual-continuous, in Mohamed and Singh [77], and
quasi—discrete ones, under the name quasi-semiperfect, in Oshiro [83a].

The decomposition theorem 4.15 is due to Oshiro [83a]. Preliminary versions
appeared in Mohamed and Singh [77], Mohamed and Miiller [79] and Kasch [79]; the
present proof comes from Mohamed, Miiller and Singh [85]. For projective modules,
the theorem is already in Mares [63].

The exchange property (Corollary 4.19) follows immediately from the
decomposition theorem and Zimmermann—Huisgen and Zimmermann [84]. There is an
extensive literature concerning various aspects of the lifting property; cf. eg. Harada
(80], [82a,c], Oshiro [83a), [84a,b].

The basic results on relative projectivity come from Azumaya [P] and Azumaya,
Mbuntum and Varadarajan [75]). Proposition 4.39 is related to Golan [71b]. Theorem
4.41 was observed by several people, eg. Varadarajan [79a). Theorem 4.44 is proved
in Mares [63].
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Most of the remaining results are taken from Mohamed and Miiller [81], for
discrete modules, and from Mohamed, Miller and Singh [85], for quasi—discrete
modules. The projective case of Corollary 4.51 appears in Mares [63]. Lemma 4.52
and Theorem 4.53 are new.



CHAPTER 5
DISCRETE MODULES

The short first section investigates when a quasi—discrete module is discrete or
quasi—projective. The next section studies the endomorphism ring of a
(quasi-)discrete module, and contains results analogous to those in Section 1 of
Chapter 3. The final section provides an explicit description of all discrete modules
over commutative noetherian rings.

1. DISCRETE MODULES
The first lemma, and its proof, are dual to Lemma 3.14.

Lemma 5.1. A quasi—discrete module M is discrete, if and only if every epimorphism
M —>> M with small kernel is an isomorphism.
PROOF. The necessity of the condition is obvious. Conversely, to establish (D2), let

f: M —>> N be an epimorphism, with kernel K, onto the summand N of M. As M
is quasi—discrete, there is a decomposition M = A @ B with A ¢ K and B n K << B.
Now N ¥ M/K = K+B/K & B/B n K. Theorem 4.24 yields N ~ B. Let
g:N>—>> B be an isomorphism. Then M = AeB-L° f|B >
leg oan s . . .
AeN > A ® B = M is an epimorphism with the small kernel B n K. By
assumption, it is an isomorphism, that is BN K = 0. Then K = Ae B nK =
Ac® M, and f splits. o

The following theorem allows to determine when a quasi—discrete module is
discrete or quasi—projective. Recall that a quasi—discrete quasi—projective module is
always discrete (Proposition 4.39).

Theorem 5.2. Let M = o Mi be a quasi—discrete module, represented as a direct sum
iel

of hollow submodules, according to Theorem 4.15. Then

(1) M is discrete if and if all M; are discrete;

(2) M s quasi—projective if and only if all M, are quasi-projective.

PROOF. The necessity of the conditions is obvious, as both properties are inherited
by summands.

In the converse direction, in case (1), let f : M —>> M be an epimorphism
with small kernel. Then M = X fMi is an irredundant sum of hollow submodules
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fMi. Lemma 4.22 implies M = fMi. By Theorem 4.15, there is a permutation p of
iel
fiM

i

I such that fMi v MP . The epimorphism M, > fMi ¥ My, is an isomorphism,
i i

since M, is Mj—projective for i # j, and since Mi is discrete by assumption. It follows
that f is an isomorphism. Hence M is discrete, by Lemma 5.1.

In case (2), M, is M(I-i)-projective since M is quasi—discrete, and M,—projective
by assumption. Hence M, is M-projective, and therefore M is M-projective

(Propositions 4.32 and 4.33). o

2. ENDOMORPHISM RINGS

Throughout this section, S denotes the endomorphism ring of the module M, J
the Jacobson radical of S, V the collection of endomorphisms with small image, and
S =S/v. (It is easy to see that V is an ideal of S.)

Lemma 5.3. IfM is quasi—discrete, then idempotents modulo V can be lifted.

PROOF. Let e € S such that e — e € V. Then (e2 - €)M is small. Since
M =eM + (1 - ¢)M and M is quasi—discrete, there exists an idempotent f € S such
that fM < eM and (1 - )M < (1 —e)M. Clearly (f —e)M < eM. Now, for any m € M,
f-em=(1-e)fm-¢el-fim = (1 -e)fm-e(l —e)m’ = (1-¢) (fm—em”).
Thus (f —e)M < (1 —e)M. Hence (f—e)M<eMn(1-e)M = (e— e2)M << M. We
concludef —e e V. al

The next theorem is analogous to Proposition 3.15.

Theorem 5.4. Let M be quasi—discrete. Then M is discrete if and only if V=1J and
S/V is regular.

PROOF. "Only if": Let a be an arbitrary element of S. Since M is (quasi-)
discrete, M = M1 -] M2 with M1 < aM and oM N M2 << M. Let e denote the

projection M1 ® M2 _>> Ml' Thenea: M —> M1 is an epimorphism. Since M

is discrete, Ker ea ¢® M. Write M = Ker ea ® N. The restriction of ea to N is an
isomorphism onto Ml’ and the inverse isomorphism of M1 to N can be extended to an

element S € S. Then fe a = 1. Now (a - afea)M = (a - afea)(Ker ea @ N) =
ofKer ea) < oM n M,. Consequently (a- afea)M << M, so a — offea € V.

Therefore S/V is a regular ring.
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It then follows that J < V. We proceed to show that V ¢ J. Given X €V,

MM << M. Since M = MM +(1 - A)M, (1 - A)M = M. As M is discrete, 1 — X is
right invertible. But then A € J, since V is an ideal of S.

"If' : Let ¢ € S be an epimorphism with small kernel. There exists 9 € S such
that ¢ — oo € V. We prove that 1 — ¢ € V. Assume that (1 - yo)M + B = M.
Then ¢(1 — ¥o)M + ¢B = ¢M = M. Hence yB = M as y(1 — Y9)M << M. Thus
M = B + kerp = B since kerp << M. Hence(l - yp)M << M. Then
1 -9y eV =17, and hence 9y is a unit in S. Thus ¢ is a monomorphism. Then M is
discrete by Lemma 5.1. o

Corollary 5.5. An indecomposable discrete module has local endomorphism ring.
PROOF. S/V has no non-trivial idempotents by Lemma 5.3. It then follows by
Theorem 5.4 that S/J is a division ring. o

Corollary 5.6. Let M be a discrete module. Then S is semiperfect if and only if M is a
direct sum of a finite number of hollow submodules.

PROOF. By Theorem 4.15, M has a decomposition, unique up to isomorphism,
M= i:I Hi where each Hi is hollow. It also follows by Lemma 5.3 and Theorem 5.4
that any finite or countable set of orthogonal idempotents of S/J lifts to a set of
orthogonal idempotents of S.

Assume that S is semiperfect. Then S contains a finite number of
indecomposable orthogonal idempotents whose sum is 1. The uniqueness of the
decomposition M = ':I H, then implies that I is finite.

1

Conversely, assume that I is finite. Again the uniqueness of the decomposition
implies that S cannot contain more than |I| orthogonal idempotents’ the same is also
true for S/J. Hence S/J is semisimple, consequently S is semiperfect. o

Theorem 3.11 says that S/A is a right continuous ring if M is a continuous
module. The analogous statement for discrete M is not valid: S/ V is right discrete, if
and only if it is semisimple, if and only if M is a finite direct sum of hollow modules.

The next result should be compared with Corollary 3.13.

Proposition 5.7. IfM is quasi—discrete, then there is a Ting decomposition S = Sl x 32

such that Sl is regular and 32 is reduced.
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PROOF. Let M = A & B, where A and B have no nonzero isomorphic summands.
We claim that fA is small, for every homomorphism f : A —> B.

If not, fA contains a nonzero summand S of B. The induced epimorphism
A —>> S splits, since S is A—projective. This produces a summand S’ of A
isomorphic to S, in contradiction to the assumption.

We decompose M = @ Hi into hollow summands, according to Theorem 4.15.

iel
Let M2 be the direct sum of those Hi which appear with multiplicity one, and M1 the
direct sum of the rest. By Proposition 5.2, M1 is quasi—projective, hence discrete. By
Theorem 5.4, 5, is regular.
The claim applies to M = M1 ® M2, and shows that fMi is small, for any
f: M, —>M : (i #j). Consequently 5=75, x5,

Let a € S, with a2M2 << M, Wiite My = A ® B with A ¢ oM, and

9
Bn on2 small; let TA and T be the corresponding projections. Then
7rBaM2 =Bn aM2 is small. Secondly 7rAaA < 7rAa2M2 << MMy = A is small.
Thirdly 7, eB = im(rAa]B : B —> A) is small by the claim. Consequently

aM << M, hence a € Yy This shows that 32 is reduced. 0

The next lemma is partially an analogue of Lemma 3.2.

Lemma 5.8. Let M be a quasi—discrete module. If {ei : 1€ I} is a family of

idempotents of S which are orthogonal modulo V, then T eiM is direct, and is a
iel
summand of M.

n
PROOF. Consider any finite subfamily {e;,....e }. As (1-2 ei)2 =
i=1
n n
1-% ¢ + I ee; and T ee. €V, the element 1 — X & of S is idempotent
i=1 igj ' i#j ' i=1

modulo V. By Lemma 5.3 it lifts to an idempotent e € S. It follows readily that the

extended family {eO, €ps s en} is orthogonal modulo V, and sums to 1 modulo V.

n n n
We deduce immediately M = & eiM. SinceeM n T eiM < e.eiM
i=0 I i=0,i#j i=0,i#j
n
<< M, Lemma 4.27 implies M = o eiM.
i=0
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We conclude that the sum X eiM is direct, and is a local direct smmand of M.
iel
But then it is a summand of M, by Corollary 4.13. o

The last result of this section parallels Corollary 3.9.

Corollary 5.9. If M is quasi—discrete, then any family of orthogonal idempotents of S
lifts to a family of orthogonal idempotents of S.
PROOF. Let {e : i € I} be a family of orthogonal idempotents of 5. By Lemma 5.3

we may assume that each & is an idempotent of S. By Lemma 5.8 we have

M= e eMeD. It follows easily that M = @ eM e (1- j)D, for any j € I. Let
iel i€l

fj be the projection orto e; JM corresponding to this last decomposition.

One has f = f and e M = fJM hence leJ f] i‘JeJ ej, and fjei =0 for j#i.

Consequently fifj = fiejfj = 0, and the { | are orthogonal idempotents.

Moreover
.—f )M = X (e.-1f.)e.M .—f)1-e)D= X .M.
(e g J) iEI(eJ J)el + (eJ J)( eJ) it e

If the last sum is small, we can conclude ej - fj €V, and fj is a lift for éj, as required.

Suppose, to the contrary, that X e-eiM is not small in e M. Then it
i€litj J
contains a nonzero hollow summand H of ejM. Let 7 be the projection from ejM to

H. Then ¥ me.eiM = H, hence 7e. : @ eiM —> H is onto. As M is
ielij I el
quasi—discrete, H is ( @ eiM) — projective. Therefore the epimorphism splits:
i€l,i#j
® eM = Ao (kerre; N @ eM)
i#j J 1#]
with A ¥ H. But e eiM refines to a decomposition which complements summands
i#]
(Theorem 4.15); hence
® eM =B e (ker me. N © e;M)
i#j J i#j
where B ® ekM for some k # j. We apply 7 ej and obtain H

mei(® eM) = re.B.
Jl#‘] J

Since ejekM << ejM, we conclude 7rejB < rejekM << 7rejM = H. This yields the

contradiction H << H. o
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3. COMMUTATIVE NOETHERIAN RINGS

The aim of this section is to determine all discrete modules over commutative
noetherian rings. The material is taken from Mohamed and Miiller [88]. Because of
the relative complexity of the arguments, we use freely results from Kaplansky [74],
Matlis [73] and Zariski-Samuel [60].

R shall always be a commutative noetherian ring. Our starting point is an
explicit description of the structure of hollow discrete modules.

Proposition 5.10. Let H be a hollow module, over a commutative noetherian ring R,
with annihilator 1.

H is (discrete and) local, if and only if R/I is a local ring, and H is isomorphic to
R/L

H is discrete and non—local, if and only if R/I is a local ring with ezactly one
additional prime ideal, P/1, the integral closure of R/P is also local, and H is
isomorphic to the total quotient ring (R/I)p of R/L
PROOF. Without loss of generality we assume I = 0. The statement concerning the
local case is trivial.

Let H be hollow and discrete. We define P = {x € R:Hx # H}; this is a prime
ideal (in fact, it is the unique co-associated prime ideal of H; cf. Chambless [81],
Zoschinger [83]). Clearly H is P—divisible. As the epimorphisms x : H —> H (x £ P)
are isomorphisms, by (D2), H is also P—torisonfree, and is therefore a module over the

localization RP. As such, it is still hollow and discrete.

n
The radical of H, as RP—module, is RadH = H RadRP =HP =Y H

where P = .
i

I =

piR. Thus, as RP—module, H is local, hence cyclic, hence isomorphic
1

to RP.

Observe that P is a maximal ideal, if and only if H is local as R—module: in the
non-trivial direction, if P is maximal, the quotient field Rp /PP of R/P coincides with

R/P, and therefore RP =R + P As H v RP is hollow, we deduce R, = R.

P P
Consequently, R and H are local.

Now we assume, in addition, that H is non-local. Thus P is non—-maximal.
According to Matlis [73], Theorem 10.5, the following are equivalent for a
commutative noetherian domain which is rot a field : (i) the domain is local and
one—dimensional, and its completion has only one rank zero prime ideal; (ii) the

integral closure is a discrete valuation ring; (iii) the quotient field is a hollow module.
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As H is isomorphic to Rp, the quotient field RP/PP of R/P is still hollow as

R/P-module, and Matlis’ Theorem applies to R/P. We conclude that R/P is local
and one—dimensional, with local integral closure.

To complete the proof in the non—local case, in one direction, it remains to show
that R has no prime ideals beyond P and the unique maximal ideal m containing P.

Suppose there is an additional prime ideal. If it is comparable with P, then it is
properly contained in P, and we can choose it to be maximal such. Call it Q’. By
Kaplansky [74], Theorem 144, there are infinitely many prime ideals between Q’ and
m. Thus, in any case, we can find a prime ideal, Q, which is incomparable with P.

Let RPQ denote the localization at the complement of P U Q, which has two

maximal ideals, PPQ and QPQ’ One has R ¢ RPQ ¢ Rp. Both RPQ/PPQ and
RP /PP identify naturally with the quotient field of R/P, and hence with each other.
One concludes H ® RP = RPQ + PP‘ Hollowness yields RP = RPQ ;a

contradiction.
In the converse direction, we have to show that any RP, with all the properties

of the non-local case, is hollow, non-local and discrete. As overrings of
one—dimensioral noetherian rings are nroetherian and at most one—dimensional
(Kaplansky [74], Theorem 93), the integral closure of R/P is a discrete valuation ring.
Then Matlis’ Theorem implies that RP/ Ppis hollow. But P is the prime radical of

R, hence nilpotent. It follows that RP itself is hollow.
Any R-homomorphism RP -_ RP is automatically an RP—homomorphism.
Thus (D2) holds, and Ry is discrete. Rp is non-local, as P is not maximal.

1]

According to the proposition, for any hollow discrete module H, there is a
unique maximal ideal containing the arnihilator of H. We shall call it the attached
mazimal ideal of H.

From now on, we shall write any hollow discrete R-module as R/T or (R/I)p,

and tacitly assume the properties of the proposition. In the context of the next
lemma, we note that hollow discrete modules with distinct attached maximal ideals
are always relatively projective, since there are no non-zero homomorphisms between
subfactors.
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Lemma 5.11. For hollow discrete modules with the same attached mazimal ideal m,
relative projectivity holds for

(1) R/1; and R/L, if and only if 1) = I,;
(i1) R/1; and (R/1,)p if and only if I; < L;
(iid) (R/II)PI and (R/Iz)P2 if and only if either P; # Py, or Py = P,y and

I, =1, and R/I1 is complete.

PROOF. (i) Suppose that R/I; is R/I,-projective. Consider the two natural maps

R/I, —>> R/(I; + I,). One obtains a € R with al; <I, and 1 -a €l + I,

1 -
Then 1 — a lies in the attached maximal ideal m. Hence a ¢ m, and a is invertible in
the local ring R/(I; N I,). One concludes I, <I,. The rest is trivial.

(i) Suppose that R/I; is (R/I2)P—projective. Consider the natural maps
R/L, —> Rp/(I; + Ipp). As before one obtains a € Rp with al; < Ipp and

1-ael] + 1 If 1, < P, then 1 — a € Pp and hence al ¢ R,. Then

2P P
Il < IQP Nk = T2, and therefore Il < 12. If, on the other hand, I, { P, then there is
b € I,— P, hence b€ Rp. Thus ab € al; < I,p, yields a € Iop, and consequently

1= (1-a) + a € I} + Lyp. This gives 1 = x + y with x € I, and

y=1-x€lp NR=1I, Thereresults 1 =x+y€ I, + I, ¢ m; a contradiction.

In the converse direction, R/I, is (R/I,)p-projective since, due to I, <I,, all
R-modules to be considered are R/I;-modules. (R/I2)P is trivially R/I,—projective,
since all R-homomorphisms { from (R/I,),, to factors R of R/I; are zero : indeed for
¢ € m - P and arbitrary x € (R/I,)p and n € N, one has {(x) = f(xc ™)™ m", hence

®
fix)e n m*=o.
n=1
(i)  The first case is again trivial, since all maps are zero: given

f: (R/Il)Pl _ iFZI2iP2, we determine s such that P; €Iy and de P; - Py
-1
Then for every x € (R/Il)Pl,f(x) =1f(xd ")d € iR7125P212 = 0.

In the second case, I, = L, follows as in (i). We may then assume I =1, =0,

and write P1 = P2 = P. To show that R is complete, we note first that the m-adic
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topology coincides with the cR-adic one, for any ¢ € m — P. Consider a sequence
v, € R with v, —v € c"R. Then f(c™) = v ¢ + R yields a well defined

R-homomorphism f : RP > RP/R. By relative projectivity, there is a € RP with
f(c™) = ac ™ + R, that is v, -3 E ¢"R. We conclude lim v, = & and so R is
complete.

In the converse direction, we have to show that RP is quasi—projective if R is
complete. Consider any R-homomorphism f: RP _ RP/X, where X is any
R-submodule of Rp,. Again, f is determined by f(¢™) = w_ + X, with w_€ Rp.

The sequence wncn is Cauchy in the {Xc"}-topology on Rp. We shall see that Ry is

complete in this topology, so that lim wncn = a exists in RP. We obtain

wncn —a € Xc™ hence W ac ™ e X. It follows that a extends f.

®
To verify the completeness of RP, wedefineD= n Xc* It obviously suffices
n=1
to check the completeness of X/D. As D is c—divisible, it is an ideal of RP, and is

therefore of the form D = (D n R)P. Passing to R/D N R we may assume D = 0.

[41]
Define the ideals A = Xc® N R of R. Then n A =0,Ac<A

A,
n=1 n

n+1 ¢
and the Anc_n form an ascending sequence with union X. Since cR contains a power

of the maximal ideal m, it follows from Chevalley’s Theorem (cf. Zariski and Samuel
[60], Theorem 13 on page 270) that there is N with Ay < cR. One deduces

[11]
Ajc=A,, forallny N Consequently X = v AT = Ay@™ ¥ Ay s finitely

generated, and therefore complete. o

The rext lemma discusses the discreteness of a direct sum of copies of the same
hollow discrete module.

Lemma 5.12. For a local hollow discrete module RfI, the direct sum (R/I)(n) is
discrete if and only if n is finite or R/I is artinian. For a non—local hollow discrete
module (R/I)P, (R/I)P(n) is discrete if and only if n is finite, and R/I is complete if
n> 1

PROOF. We may agair assume I = 0. By Theorems 4.53 and 5.2, R(n) is discrete if
and only if it satisfies 1sTn. This is true if n is finite. If n is infinite, since R is a
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local ring, 1sTn holds precisely if RadR is T-nilpotent, ie. if R is a perfect ring. As R
is noetherian, this means that it is artinian.

By Lemma 5.11, Corollary 4.50 and Theorem 5.2, the given conditions are
certainly necessary and sufficient, for (R/I)P(n) to be discrete, if n is finite. It

remains to show that (R/I)I(,m) is not discrete.
Fix, as before, an element ¢ € m-P, and recall that the ¢t generate RP as

R-module. Thus
flc™) = (s Lo, )+ r®
determines a well defined R—homomorphism RP — RP(M)/R([N). Suppose that

RP([N) is discete. Then Rp is RP(m)—projective (Lemma 4.23), and we obtain a lift

RP —_— RP([N). As this R-homomorphism is automatically an RP—homomorphjsm,

we have an  element a= (al,...,aN,O,,,,) € RP(m) such  that
(c_n,.,.,c_l,O,...)—(a.l,...,al\I,O,...)c_n € R(m) for all n. For n = N+1, the

(N+1)—coordinate yields ¢! € R; a contradiction. o
We need an auxiliary general result.

Lemma 5.13. Let R be a commutative noetherian ring. Let Ij (j € N) be a sequence of

ideals, all contained in the same mazimal ideal m. Then, afier suitable reindezing, the
t
following is true: for any choice of s and N there ezists t such that n I.c I1 + mN.
J=s
PROOF. We claim first that, for almost all k, Ik contains N Ij for all finite F.
J¢F
Indeed, suppose there are infinitely many exceptions k1 < k2 < ... . This means

that there are x_ € n I, - Ik for all n. As R is noetherian, we have
#F n
n
[t

S
b an= E

]
an, Choose q such that k ¢ U
n=1 n q

. Y Fn' Then x, € Ik holds for
n= q

]
n =1,.,s. Butthen xq € X an < Ik , which is a contradiction.
n=1 q

We apply this claim to the ideal ij of the m—-adic completion f{ of R. We

[11] -~ ~
reindex such that it is valid for k = 1, and obtain then in particular that n Ij < I1
j=s

holds for all s.
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[t ~ -
Lete D= n I i Then R/D is noetherian, local and complete. By Chevalley’s
J=s
Theorem (Zariski and Samuel [60], VIII. 5.13), there exists t
t

t(N) such that

t - - ® t -

n I.<m' +D. Wewrite R=R/ n m", and deduce n I.< n I.gmN+D§
j=s J n=1 j=s j=s J

~ N R t ~
ml 4 I, = (mN +1;) hence n Ij < (mN +L) NR= (mN +1;)", using that

J=5
mN + I1 is co—artinian hence m-adically closed. The lemma follows immediately.

o
The crucial step towards the main theorem is the following observation.

Lemma 5.14. An infinite direct sum of non—local hollow discrete modules with the
same attached mazimal ideal is never dual continuous.
PROOF. TUsing the second part of Lemma 5.12, one sees that it suffices to derive a

®
contradiction, from the assumption that a countable direct sum o (R/Ik)P with
k=0 k

distinct Pk is dual continuous.
We assume that the indexing is chosen in such a way that Lemma 5.13 applies.
®
We observe that (R/IO)PO is kzl (R/Ik)Pk—projective. But homR((R/IO)PO,

®
]:1 (R/Ik)Pk) = 0 holds by the proof of Lemma 5.11 (iii). So we conclude that

(1]
homp((R/1,)n , @ (R/L)p /X) = 0 holds for all R-submodules X.
RO ke > 2 B e,
We construct a specific homomorphism f. We start by fixing an element ¢ € m —
P, Then mY 4 P, < "R + P, holds for suitable N = N(n). Lemma 5.13 shows

that v(ve)can define, inductively, an increasing function g such that g(0) = 1 and
g(n

0 I‘SIO+mNgPO+cnR.
j=g(n-1)+1
g(n) ®
Next we put w = Y e, where e, = (0,..,0,1,0,..) € @ (R/I;)p .
j=g(n—1)+1 J J k=1 k
We let X = En(wn+1 c-w)R + I w I, and determine f: (R/l)p —>

0

®
® (R/I)p /X by f(c™) = w, + X. This yields a well defined R-homomorphism,
k=1 k

which must be zero. In particular f(c_l) = 0, and we obtain r, €R x € I0 such



92

that w; = B (w  jc-w )r + D w x ,or D w (6, —cr ;+r —x)=0. Since,

n+1 n nrn’
by our choice of w_, the sum ¥ _w_ R is direct, we conclude §_, —cr +r_—-x_ =
n nn nl n—1 n n
o g(n) n :
qQ, € w, = n I. < P0 + cR. Recursively we deduce
j=g(n-1)+1 J
n .
rn=—cn_1 + cn_l(xn+ Q) As r, = 0 holds for large n, we obtain

1=
n
n-1 -y &
i=1
modulo PO’ we conclude 1 € P0 + cR < m. This is the desired contradiction.

. n . .
- n—i i n . .
c (x, +a) eIy + 121 ¢ (Py+ cR) <Py + cR. Since c is regular

o
We are now able to establish the pivotal special case of the structure theorem.

Theorem 5.15. Let R be a commutative noetherian ring. Consider a collection of
discrete hollow R—modules, which are pairwise relatively projective, and have the same
attached mazimal ideal. Then their direct sum is discrete, if and only if it is finite, or
all the summands are local and artinian.

More specifically, and with the notation of Proposition 5.10, a direct sum of
discrete hollow R—modules with the same attached mazimal ideal is discrete precisely in
the following two cases: Fither it involves finitely many copies of one local module R/I
and of finitely many non—local modules (R/Ik)Pk’ subject to the further restrictions

that T < N L, and that R/Ik is complete if (R/Ik)P appears with multiplicity greater
k

than one. Or it involves infinitely many copies of one artinian local module R/I.

PROOF. Everything follows immediately from Corollary 4.50, Theorem 4.53,
Theorem 5.2, and the results of this section. We note specifically that Lemma 5.11
implies I < n Iy, if a local module R/I and non-local ones, (R/Ik)Pk’ do occur.

Moreover, in this situation, I < Ik < Pk and dim Pk = 1 imply that R/I is not

artinian; and therefore the multiplicity of R/I is finite. al

The general case, with more than one attached maximal ideal, reduces to this
special one. For a direct sum M of hollow discrete modules, denote by M(m) the
subsum of those with attached maximal ideal m. Then we have
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Corollary 5.16. M is discrete if and only if M(m) is discrete for all m.
PROOF. Write M = M; @ M,,, where M, is the sum of certain M(m), and M,, is the

sum of the remaining ones. We claim that every homomorphism f between subfactors
of M; and M, is zero.
Indeed, let f(x) =y. Thenx € @ H andye © H, for finite subsums of M,
ieF j€G
and My. Let A= n H(i’ and B= n H?. Then xA = 0 and yB = 0, and therefore
ieF j€G
y(A+B) = 0. But, since the attached maximal ideals of the H, and Hj are distinct,
A+B = R. Thus y = 0, and consequently f = 0.
With the claim at hand, the corollary follows immediately from Corollary 4.49.
(Instead of referring to Corollary 4.49, one can deduce from the claim that each
submodule X of M decomposes as X = @ (X n M(m)). With this information, (D)

and (D,) follow directly for M, from their validity for the M(m).) o

Remark. The decomposition M = ® M(m) of Corollary 5 is an instance of a
generalized primary decomposition (Zoschinger [82b]). This decomposition is most
naturally described in the language of torsion theories; cf. Stenstrém [75], Chapter VI,
whose terminology we shall use.

Let R be any commutative ring. Call an ideal m—isolated if it is contained in at
most one maximal ideal, m. The m-isolated ideals form a Gabriel topology, and
therefore define a hereditary torsion class, T(m). For any R-module X, the sum of its
T(m)-torsion submodules X(m) is direct. If X = @ X(m), then X(m) = X, the

localization of X at m.

The collection T of modules of the form X = ® X(m) forms a hereditary
pretorison class; the corresponding linear topology is generated by all isolated ideals
(as a subbase). If R is noetherian, T is a hereditary torsion class.

To see that this decomposition X = @ X(m) generalizes primary decomposition,
note that Theorem 2.6 of Brandal [79] says that every torsion R—module belongs to T
if and only if R is h-local. Every commutative ring of Krull dimension one, and in
particular the ring of integers, is obviously h-local.

We conclude the section with a number of examples of non-local hollow discrete
modules.
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Example 5.17. Dedekind domains R.
To obtain a non-local hollow discrete module, (R/I)p, one needs P = I = 0, and

R local. Thus R must be a valuation ring, and then the quotient field is the only
such module. It is quasi-projective if and only if the valuation ring is complete.

Example 5.18. A local ring R with many non-local hollow discrete modules.

Take R to be the localization, at the maximal ideal generated by x and y, of
either the polynomial ring R[x,y] or the power series ring R[[x,y]], over the real
numbers.

Each one—dimensional prime ideal of R is generated by a prime polynomial
p(x,y) without constant term. As Rp is a discrete valuation ring, its ideals are the

powers Pf,, and the candidates for our modules are the (R/PS)P. In the second case,

they will be quasi-projective. Such a candidate is indeed non-local hollow and
discrete if and only if the integral closure of R/P is local; and this means that the
curve p(x,y) = 0 has only one branch at (0,0), that is is either regular or has a
hypercusp. For example, x3 - y2 leads to such a module, while x3 + x2 - y2 does
not.
Example 5.19. A ring R with infinitely many maximal ideals, each attached to
non-local hollow discrete modules.

Take R to be the localization of either R[x,y] or R[x|[[y]], at the complement of

u m, where N is any countable subset of R, and m. is the maximal ideal generated
neN

by x+n and y. As R is uncountable, the maximal ideals of R are precisely the
localizations of the m —(cf. Jategaonkar [86], (7.1.5) and (7.2.6) or Miiller [80],

Proposition 21). The ideal Pnk of R generated by x+n+yk, is prime and mn—isolated.
The factoring R/Pnk is a valuation ring, and complete in the second case. Therefore

the modules (R/Plslk)P , (s € N) are non-local hollow discrete with attached maximal
nk

ideal m -

COMMENTS

Theorem 5.2 appears in Mohamed, Miiller and Singh [85].

The basic properties of the endomorphism ring of a discrete module are given in
Mohamed and Singh [77]; the quasi—projective case is due to (Sandomierski and)
Mares [63]. Lemma 5.8 and Corollary 5.9 are due to the authors.

Everything in the last section comes from Mohamed and Miiller [88a].



APPENDIX

In this appendix, we discuss a number of topics which are related to the
material of the book. Proofs will be given only where they are not readily available in
the literature.

Several variants of supplementation and their interactions are considered. Cases
where explicit structural information is available are compiled. Results on the
splitting of supplements, and on modules with (Cl) are summarized. The historical

origin of the concept of continuity, in von Neumann algebras and continuous
geometries, is described. A brief overview is given of background and recent work on
the weaker concept of R O—continuity. In the last section we list a number of open

problems.

1. VARIANTS OF SUPPLEMENTATION
Recall that a module M 1is supplemented if, for every decomposition
M = A + B, there exists a supplement of A contained in B; and that M has (Dl) if it

is supplemented and every supplement is a summand.

Definitions A.1. A module M is weakly supplemented if every submodule has a
supplement, ©—supplemented if every submodule has a supplement which is a
summand, H-supplemented if for every submodule A there is a summand A’ such that

A + X = M holds if and only if A + X = M.

Proposition A.2. The following implications hold:

(Dy)

H-supplemented
supplemented
e—supplemented

weakly supplemented
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PROOF. (Dl) implies H-supplemented: Consider a submodule A of the module M.
By (D) we have M = M; ® M,, where M; < A and My n A is small. We infer

A=M1 e M, n A fM=A + X, then M = M1+ M20A+ X hence

2
M = Ml + X

M = A’ eB, such that M = A + X if and only if M = A’ + X. In particular,
M=A+B. IfM=A + B’ for B ¢ B, then A’ + B’ = M = A’ @ B, hence
B’ = B. We conclude that the summand B is a supplement of A.

The remaining implications are trivial. ]

Next we investigate the relationship between H-supplementation and the lifting
property.

Proposition A.3. If RadM << M, then M is H-supplemented if and only if
M = M/RadM is semisimple, and each summand (=submodule) of M Ulfts to a
summand of M.
PROOF. Given H-supplementation, consider A < M. The full inverse image A has a
supplement B. Then A n B is small in B hence in M. Therefore A n B < RadM, and
consequently A ® B = M. We conclude that M is semisimple.

Returning to A < M, we have a summand A’ < M such that M = A + X if and
only if M = A’ + X. Consequently M = A + Xifand only if M = A + X. As M
is semisimple, this implies A = A“. Thus A lifts to the summand A’.

In the converse direction, if N ¢ M is given, then M = M, ® M, with Ml =N.

As RadM is small, we have M = M1 + X if and only if M = N + X. Thus M is

H-supplemented. o

Remarks. (1) It is easy to see that a @-supplemented module M has a decomposition
M=M, oM, such that RadM1 =M and RadM2 << M,

(2) While the properties (Dl)’ supplemented and weakly supplemented are
inherited by summands, it is unknown (and unlikely) that the same is true for the
other two properties.

We now provide examples to separate the properties of Proposition A.2.
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Lemma A.4. Let R be a commutative local ring, with mazimal ideal J, and let M be a
finitely generated R—module. Then

(1) M is supplemented,
n

(2) M is e—supplemented if M ¥ @ R/Ii’ for ideals I;
i=1

(3) M is H-supplemented if and only if, in addition, I} < ... <1 ;

(4) M has (D) if and only if, in addition, JI <1, <. <L

(5) M is (quasi-)discrete if and only if, in eddition, I; = ... =1 .
I M is 2—generated, then (2) reads "if and only if* also.

PROOF. Everything but the last statement is proved in Zdschinger [82a]. Let M be
2—generated and e-supplemented, and pick a € M—RadM. Then aR has a supplement
which is a summand, i.e. M = M;® M, with aR n M, small. Thus M =2aRe M2

with 0 # aR » Ml’ Therefore the Mi are both 1—dimensional over the field R/J, and-
consequently M, ¥ R/Ii with I, < J ¢ R. u]

Lemma A.5. Let R be an incomplete rank one discrete valuation ring, with quotient
field K. Then the module M = K2 is @—supplemented but not supplemented.

PROOF. By Zoschinger ([74b], 2.2) every submodule of M has a supplement, but M
is not supplemented. Let B be a supplement of A in M. As M is divisible,
M =Mr =Ar + Br< A + Br, forevery 0 # r € R. Thus B = Br, and B is divisible,
hence injective, hence a summand. o

Corollary A.6. No other implications hold in the diagram of Proposition 2, ezcept
possibly "H-supplemented = supplemented".

PROOF. Use Lemmas 4 and 5. )

We now provide a complete list of all the relevant modules over Dedekind
domains. All these results are due to Zoéschinger [74a], [74b], [82a]; cf. also Hausen
[82], Mohamed and Abdul-Karim [84], and Singh [84].

Proposition A.7. Let R be a local Dedekind domain, with mazimal ideal P, quotient
field K, and Q = K/R. Let a, b, ¢ and n be natural numbers, and let B(nl,...,ns)

denote the direct sum of arbitrarily many copies of R/Pnl,...,R/Pns. Then the
following table describes all modules M with the listed properties:
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weakly supplemented
} M~R%*e KP e Q° e B(1,...,n)

e—supplemented
supplemented

M as above N
H-supplemented
(D,) M~ R* e K° @ Q° or B(n,n+1) (b<lif R is
quasi—discrete MvR%e Kb or R*e Q or B(n) incomplete)
discrete My R%*e KP or B(n) J

PROOF, with indication of original terminology: Zoschinger [74a)], 2.4 and [82a], 2.10
"komplementiert"; [74b], 2.2 and [82a], 2.6 "supplementiert"; [74b], 4.3 "stark
komplementiert"; [74b], 5.2 "stark supplementiert"; Theorem 5.2. o

Proposition A.8. If R is a non—local Dedekind domain, then all these modules are
torsion. Moreover, a torsion module has any one of these properties if and only if
every P—primary component (viewed as module over the localization RP) has the

structure described in Proposition A.7. (Note that "torsion" forces a = b = 0, and
that ¢ and n will vary with P.)
PROOF. Zoschinger [74a], 3.1. o

Remark. Rudlof [89], a student of Zoschinger, has recently fully determined the
structure of all weakly supplemented modules over commutative noetherian rings.

2. SUPPLEMENTS ARE SUMMANDS
The property of the title has been widely studied for projective modules. We
summarize the main results:

Proposition A.9. The following are equivalent, for any ring:

(1) In every finitely generated projective right module, every supplement submodule is
a summand;

(2) every projective right module with finitely generated radical factor module, is
itself finitely generated;

(3) in every projective right module, every finitely generated submodule is contained
in a mazimal submodule;

(4) the analogues of the above properties, for left modules.
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All these properties are true for commutative rings, as well as for rings such that
every prime factor ring is right (or left) Goldie (in particular for right or left
noetherian rings, and for rings with a polynomial identity).

If R is a commutative domain or a right noetherian ring, then (1) is valid for
every (not necessarily finitely generated) projective module.

PROOF. Cf. Zoschinger [81] and the literature cited there, as well as Mohammed
and Sandomierski [P], where several other equivalent conditions are listed.
o

An example of a ring where these equivalent conditions fail, is provided in
Gerasimov and Sakhaev [84]; cf. also Mohammed and Sandomierski [P] for a
discussion of "minimal counterexamples".

3. EXTENDING MODULES
We summarize briefly some of the results in Harada [82b], Okado [84] and
Kamal and Miiller [88a,b,c], concerning the structure of modules with (C,) (which are

also called ezrtending modules), over certain commutative rings. Many questions
remain open here.

Proposition A.10. Let R be a commutative domain. A module M has (Cl) if and only
if it is a torsion module with (Cl)’ or the direct sum of an injective module, and a
torsionfree reduced module with (C,).

IfM is torsionfree reduced, then it has (Cl) if and only if it is a finite direct sum

of uniform submodules, each pair of which has (C,). a

Proposition A.11. Let R be a commutative noetherian ring. If a module M has (C,),

then it is the direct sum of uniform submodules.
IfM =9 M, where all Mi have local endomorphism rings, then M has (Cl) if

and only if it satisfies 1sTn, and every pair M eM : has (Cl)' o

(Fairly complicated) criteria as to when the direct sum of two uniform modules
has (C,), are contained in Kamal and Miiller [88b,c]. Complete results are known

only over Dedekind domains:
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Proposition A.12. Let R be a Dedekind domain, with mazimal ideals P. A torsion
module has (Cl) if and only if each P—primary component is a direct sum of copies of

either Ci';, or of C; and CII;'H for some natural number n = n(P). A torisonfree
reduced module has (C,) if and only if it is ¢ finite direct sum @ NL, where N is o

torsionfree reduced uniform module (i.e., a proper submodule of the quotient field
of R), and the I, are fractional ideals. o

4. THE HISTORICAL ORIGIN OF THE CONCEPT OF CONTINUITY

Before we start our discussion, we remind the reader of a few concepts from
lattice theory.

A complete lattice is upper [lower] continuous if x A (Vx) = V(x A x)

[x v (Ax;) = A(x V x;)] holds for any chain or up [down] directed family {x;}.

A lattice is modularif x < z implies x V (y Az) = (x Vy) A z.

A lattice with 0 and 1 is complemented if for every element x there is a
complement, ie., an element y with x Ay = 0 and x Vy = 1. Two elements are
perspective if they have a common complement.

An orthocomplemented lattice is a lattice with an additional operation, /, called
orthocomplementation, which is involutory and anti-monotone, and such that x’ is a
complement of x.

An orthocomplemented lattice is orthomodular if x < z implies x V (x’ A z) = z.

In quantum mechanics (von Neumann [32]), the physical observables are
represented by selfadjoint operators, a = a*, on a complex separable Hilbert space.
Two observables are simultanuously measurable if and only if their operators
commute.

The analysis of such operators let Murray and von Nemann [36] to investigate
what are now called von Neumann algebras, i.e., *—subalgebras of the algebra of all
bounded operators, which coincide with their second commutator.

Von Neumann algebras have two fundamental properties: Every left or right
annihilator is generated by a projection (ie. a self adjoint idempotent e = e* = e2).
The set PA of all projections forms a complete orthomodular lattice. (Here, PA is
partially ordered via e < f iff e = ef, and the orthocomplementation is defined as
e’ = 1-e.) Elements e, f € PA are called equivalent, e ~ f, if there is a € A with
e = aa* and f = a*a. An element e € PA is finiteif e ~ { ¢ € implies e = .

A factor is the special case of a von Neumann algebra whose center consists of
the complex numbers only. Factors are precisely those von Neuman algebras which
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occur in tensor decompositions A1 ® A2 of the algebra of all bounded operators. For

a factor A, the collection of equivalence classes in PA is totally ordered.

Moreover there exists a dimension function (unique up to a scalar multiple)
d:PA —> Rt U {»} satisfying the following properties: de = 0 iff e = 0,
de = dfiff e ~ f, de < o iff e is finite, d(e+f) = de + df if ef = 0.

The range of this dimension function is limited to the following possibilities :
{0,1,2,...n}, {0,1,2,....0}, [0,1], [0,0] and {0,0}. Accordingly, Murray and von
Neumann classified von Neumann algebras into the five types Lo I, I I and III.

All types occur. The orthomodular lattice PA is modular precisely for the two types
In and II £

Generalizing these last two cases, von Neumann ([36a], [60]) defined a
"geometry" to be a complete complemented modular lattice L which is upper and
lower continuous (and indecomposable). Kaplansky [55] established that a complete
orthocomplemented modular lattice is automatically upper and lower continuous
(cf. also Amemiya and Halperin [50]).

With considerable effort (mainly devoted to showing that perspectivity is
transitive) von Neumann found, in the indecomposable case, an (essentially unique)
dimension function d : L —> R satisfying dx = 0 iff x = 0, d(x V y) = dx + dy if
x Ay = 0. Its range is limited to the two cases {0,1,2,....,n} and [0,1]. In the first
instance, L is just an (n-1)-dimensional projective geometry (cf. Birkhoff [35]). In the
second one, L is called a continuous geometry. (The decomposable case is technically
more complicated and requires a family of dimension functions, cf. Iwamura [44]).

Next von Neumann [36c] defined regular rings (a ring R is regular if for every
x € R there is y € R with xyx = x). He showed that, if a geometry L has at least
four perspective independent elements, then there is a (unique) regular ring R whose
lattice of principal right ideals is isomorphic to L. In the projective case, R is
artinian, in fact an n x n—matrix ring over a division ring. In the continuous case, R
is not artinian, and is called a continuous regular ring.

A right continuous regular ring is one whose lattice of principal right ideals is
upper continuous. As the lattices of principal left and right ideals are dual to each
other, under annihilators, a regular ring is continuous if and only if it is left and right
continuous.
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We present now the proof, due to Utumi [61], that a regular ring is right
continuous if and only if it satisfies the condition (C;). Note that the condition (C2)

is always satisfied for a regular ring.

Lemma A.13. The principal right ideals of a regular ring form a sublattice of the

lattice of all right ideals.
PROOF. Recall that a ring R is regular if and only if for every a € R there exists
x € R with axa = a. It follows immediately that ax is idempotent, and aR = axR.
Thus a right ideal is principal if and only if it is a summand. (We shall use this fact
repeatedly in the sequel.) .

Consider two right ideal A, ]i of R which are summands. Let A ® A = R, and
let 7 denote the projection onto A . Weobtain A + B=A e 7S=B' Moreover 7B is
principal hence a summand, of R and therefore of A . We conclude
A+B=AemB®R

Since B is a summand hence projective, the epimorphism B —>> B/An B v
A + B/A v 7B splits. We deduce that A n B is also a summand. 1]

Proposition A.14. A regular ring is right continuous if and only if it satisfies (Cl) for

right ideals.
PROOF. Assume that R is right continuous, and consider an arbitrary right ideal A.
By completeness, the join V aR in the lattice of principal right ideals exists, but is

acA
possibly larger than the join ¥ aR = A in the lattice of all right ideals. We
a€cA
establish (C,) by showing A < v aR.
acA
To this end consider B < V aR with Bn A = 0. For a finite subset F of A,
acA
Vv aR = X aR holds by Lemma A.13. Therefore Bn v aR =Bn ¥ aR¢
acF aeF aeF aeF
BnA = 0. Then, by upper continuity, and since the VvV aR form an updirected

acF

family, Bn v aR=Bnv (v aR)=V(Bn v aR) =0. We conclude B = 0, as
acA F aeF F acF

required.
Conversely suppose that R satisfies (C;). Let {A;} be a chain of summands.

By (C,), the right ideal % A, is essential in a summand A. We demonstrate
completeness by showing that A is the least upper bound for {Ai}’ in the lattice of

summands.
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Let B ¢® R be any other upper bound for {Ai}' Then AnBc®R by Lemma

A13, and hence A = A n B @ C for some right ideal C. We obtain
EAi NC<ANnBN C = 0, and therefore C = 0 since % Ai is essential in A.

Consequently A = A n B, and A < B, as required.
It remains to show upper continuity. Let D be an arbitrary summand. Then
Dn Ai is a summand, and V(D n Ai) exists by completeness. = We obtain

L(Dn Ai) <v(Dn Ai) <Dn VAi‘ Since % Ai <€ vAi holds, as seen before, we deduce

v(DnA,)) <Dn VA;. But both terms are summands, and therefore equal. ul

The study of von Neumann algebras has led to a tremendous amount of
literature; for instance, Dixmier [81] lists 968 papers till 1980. An excellent survey of
the related work on orthomodular lattices, till 1966, can be found in Holland [70]; cf.
also Kalmbach [83].

5 R ,_CONTINUOUS RINGS AND MODULES
R 0—c0ntinuous regular rings have arisen in two different, though somewhat

related contexts:
First, Halperin [38] showed that most of von Neumann’s results on continuous
geometries could be obtained for ¥ 0—continuous geometries (ie. R 0—complete X -upper

and lower continuous complemented modular lattices). In particular, most
R 0—continuous geometries can be coordinatized by "R 0—continuous" regular rings. In

the spirit of Utumi (cf. Section 4 of this appendix), a regular ring is X 0—continuous if
and only if it is left and right R 0—continuous, and it is right R 0—continuous if and only

if it satisfies (X —C,): every R —generated right ideal is essential in a summand.

For the discussion of the second context, we require some background. It was
felt early on that it was desirable to develop the theory of von Neumann algebras
(= W —algebras = weakly closed *-subalgebras of the algebra of all bounded
operators on a Hilbert space), as far as possible, in a purely algebraic—topological
framework, without reference to operator theory. Kaplansky [51] introduced
AW*—algebras as an abstract generalization of W —algebras. .

We describe the relevant concepts in the setting of C —algebras (ie. complex
Banach algebras with involution subject to ||xx || = ||x||2, equivalently norm—closed
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*—subalgebras of the algebra of all bounded operators on a Hilbert space, I. Gelfand
and M. Naimark, cf. Goodearl [82a]), though some of the arguments can b*e carried
out in the gurely algebraic ietting of *-rings or even ordinary rings. An AW -algebra
[Rickart C -algebra] is a C —algebra such that the right (or left) annihilator of every
subset [element] is generated by a projection.

The set PA of projections of such an algebra A is an [R 0—]comp1ete

* *
orthocomplemented lattice. If A is finite (ie. xx = 1 implies x x = 1), then PA is
modular, and is in fact an [NO—]continuous geometry. This geometry can always be

coordinatized, by an [R 0—]continuous regular ring R. Interestingly enough it has

turned out recently that this ring R is actually the maximal left and right [classical]
quotient ring of A (cf. Handelman and Lawrence (78], Ara and Menal [84].)

KO(R), for R —continuous regular rings, is investigated in great detail in

Goodearl [79]. Crucial facts are that such rings are unit regular, and that their
finitely generated projective modules have cancellation and interpolation properties.
Some structural information on R is deduced. Many of these results extend to
directly finite right R —continuous regular rings (Goodearl [82b]), and even to

arbitrary right R —continuous regular rings (Ara [87]). In Goodearl, Handelman and

*
Lawrence [80] they use the embedding of a finite Rickart C —algebra A into an
R 0—continuous regular ring R very effectively to transfer many of these results from

R to A.
A few recent papers atiempt to extend some of this work from right
R o—continuous regular rings and their finitely generated projective modules, to (more

or less) arbitrary 0—(quasi—)continuous modules over (more or less) arbitrary rings.
The definitions (which rest on appropriate R -relativizations of the conditions (C;))

and elementary properties are given by Oshiro [83b]. Kutami [83], working over
arbitrary regular rings, proves an analogue of (2.32) for R O—essentially generated

(ie. essential over an X o—generated subsubmodule) submodules of a directly finite
R O—quasi—continuous projective module.

Mucke [88] has quite a number of more general results. Over arbitrary rings, he
proves analogues of (3.18) for X —(quasi-)continuous R —essentially generated modules

with (split) embeddings into each other. He also establishes the cancellation property
for directly finite, and the finite interpolation property for arbitrary Ro—continuous

R —essentially generated modules with the finite exchange property.
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More penetrating results are obtained over two types of rings, viz. right coherent
rings and right ZP-tings (ie. rings where the right annihilator of every element is
generated by an idempotent), and for X —(quasi-)continuous R —essentially generated

submodules of free modules. For instance, in the R o—quasi—continuous case, such
modules satisfy the internal cancellation property, the Ro—interpolation property, and
analogues of (2.32), (3.14) and (2.14). In the R —continuous case, the finite exchange

property is valid, and therefore the cancellation property if the module is directly
finite.

6. OPEN PROBLEMS

1. Characterize the quasi—continuous modules with the finite exchange property, cf.
(3.24) and (2.25). Using (2.37) and (3.20), one can confine oneself to square free
modules M. Such a module might have the finite exchange property iff end M has a
"sheaf representation" with local stalks.)

2.  Does the finite exchange property imply the full exchange property, for
quasi—continuous modules ?

3. Characterize the cancellation property for quasi—continuous modules (cf. (1.23),
(2.33) and (3.25)).

4.  Determine the rings over which every continuous module is quasi— injective
(see Rizvi [88] for partial results).

5.  Find analogues of the theorems of Chapters 2 and 3 for ¥ 0—(quasi—) continuous

modules (for numerous partial results, see Mucke [88], cf. also Section 5 of this
appendix).

6. Investigate the structure of (RO—,quasi—)continuous rings, in generalization of

(R 0—)continuous regular rings; cf. Section 5 of the Appendix.

7. Study modules and rings with the condition (C,) only, generalizing the results
in Kamal and Miiller [88a,b,c] and Chatters et al. {77, 80].
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8.  In particular, find necessary and sufficient conditions, for a module with (Cl) to

be the direct sum of indecomposables (for a sufficient condition, cf. (2.17) — (2.19)).

9.  Weaken (Cl) to the analogue of e—supplemented: every submodule has a

complement which is a summand.

10. Develop a fully satisfactory structure theory for injective modules over an
arbitrary ring, along the ideas in Goodearl and Boyle [76], and its consequences for
the structure of quasi—continuous modules.

11. The endomorphism ring of a local R-module is a local ring, provided R is
commutative or right noetherian. Investigate this implication in general. Find an
example where it fails. Find an infinite collection of local modules with non-local
endomorphism rings which are relatively projective in pairs (cf. (4.53)).

12.  Can the conditions of (4.48) be weakened ? Are (b) and (c) independent, in the
presence of (a) ? Is it sufficient to assume only (a) and 1sTn ? (All of this is of
interest only if the end M, are not local; cf. (4.49) and (2.25).)

13. In the situation of (4.53), every local summand is a summand, by (4.13). Is this
condition also equivalent to the conditions (1) — ((5) of the list? (In showing this, one
may assume that the Mi are pairwise non-isomorphic.)

14. Determine the structure of (quasi—)discrete modules over arbitary rings. (In
analogy with (5.15), (5.16) one might expect that any (quasi-) discrete module has a
"primary decomposition" such that each component is either a finite direct sum of
hollow modules, or a direct sum of local modules. These two cases are covered by
(4.50) and (4.53).)

15. Does the exact dual of (3.2) hold; ie. is (5.8) valid for supplemented modules,
except for the phrase "and is a summand of M"?

16. Determine when a quasi—discrete module has the cancellation property
(cf. (1.23) and (4.20)).
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17.  Characterize the rings over which every discrete module is quasi—projective.
(This reduces immediately to studying hollow modules.)

18. Is every H-supplemented module supplemented (cf. (A.2))?

19. Are the properties H-supplemented and e-supplemented inherited by
summands?

20. Does the converse of (A.4) (2) hold forn > 2 ?
21. Investigate the structure of (weakly) supplemented modules over arbitrary rings
(cf. the forthcoming results of P. Rudlof over commutative noetherian rings, and

Inoue [83]).

22.  Are existing supplements in arbitrary projective modules summands, over any
commutative ring (cf. (A.9)) ?

23.  Characterize the rings of (A.9) internally.
24.  For continuous modules, one knows A = J(S), cf. (3.5) and (3.15); for discrete

modules, V = J(S), cf. (5.4). Investigate the relationship between A, V and J(S), for
quasi—continuous and quasi—discrete modules.



BIBLIOGRAPHY
Abdul-Karim, F. H. [82]: Contributions to the theory of dual-continuous modules,
M. Sc. thesis, Univ. Kuwait, (1982).

Ahsan, J. [73]: Rings all whose cyclic modules are quasi-injective, Proc. London Math.
Soc. 27, (1973), 425-439.

(81]: Submodules of quasi—projective modules, Comm. Algebra 9, (1981),
T 975-988.

Amemiyah, I. and Halperin, I. [50]: Complemented modular lattices, Canad. J. Math.
11, (1959), 481-520.

Anderson, D. D. [76]: The existence of dual modules, Proc. Amer. Math. Soc. 55,
(1976), 258-260.

Anderson, F. W. [69]: Endomorphism rings of projective modules, Math. Z. 111,
(1969), 322-332.

Anderson, F. W. and Fuller, K. R. [72]: Modules with decompositions that
complement direct summands, J. Algebra 2, (1972), 241-253.

[73]: Rings and Categories of Modules, Springer Verlag, 1973.
Ara, P. [87]: Aleph—nought—continuous regular rings, J. Algebra 109, (1987), 115-126.

Ara, P. and Menal, P. [84]: On regular rings with involution, Arch. Math. 42, (1984),
126-130.

Azumaya, G. [P]: M—projective and M-injective modules, unpublished (1974).

[74]: Characterization of semiperfect and perfect modules, Math. Z. 140,

1 74 95-103.

Azumaya, G., Mbuntum, F. and Varadarajan, K. [75]: On M-projective and
M-injective modules, Pacific J. Math. 95, (1975), 9-16.

Baer, R. [40]: Abelian groups that are direct summands of every containing abelian
group, Proc. Amer. Math. Soc. 46, (1940), 800-806.

Bass, H. [60]: Finitistic dimension and homological generalization of semiprimary
rings, Trans. Amer. Math. Soc. 95, (1960), 466—488.

[62]: Injective dimension in noetherian rings, Trans. Amer. Math. Soc. 102,

(1962), 18-29.

Beck, I. [78]: On modules whose endomorphism ring is local, Israel J. Math. 29,
(1978), 393—407.

[78]: An independence structure on indecomposable modules, Ark. Mat. 16,

(1978), 171-178.

*
Berberian, S. K. [57]: The regular ring of a finite AW -algebra, Ann. Math. 65,
(1957), 224-240.



109
Birjukov, P. A. [78]: On a certain class of Abelian torsion groups, Notices Amer.
Math. Soc. 25, (1978), A—418.

Birkenmeier, G. F. [76]: On the cancellation of quasi-injective modules, Comm.
Algebra 4, (1976), 101-109.

[76b]: Self-injective rings and the minimal direct summand containing the
nilpotents, Comm. Algebra 4, (1976), 705-721.

[78]: Modules which are subisomorphic to injective modules, J. Pure Applied
Algebra 13, (1978), 169-177.

81]: Baer rings and quasi—continuous rings have a MDSN, Pacific J. Math.
97, (1981), 283-292.

83]: Modules which are epi-equivalent to projective modules, Acta
Mathematica 24, (1983), 9-16.

[P]: Quasi—projective modules and the finite exchange property.

Birkhoff, G. [35]: Combinatorial relations in projective geometries, Ann. Math. 36,
(1935), 743-748.

Bjork, J.—E. [70]: Rings satisfying a minimal condition on principal ideals, J. Reine
Angew. Math. 245, (1970), 63-73.

[72]: Radical properties of perfect modules, J. Reine Angew. Math. 253,

(1972), 78-86.

Bouhy(, T. )[75]: On quasi-injective modules, M.Sc. thesis, Ain Shams Univ., Cairo,
1975).

Boyle, A. K. [74]: Hereditary QI-rings, Trans. Amer. Math. Soc. 192, (1974), 115-120.

Boyle, A. K. and Goodearl, K. R. [75]: Rings over which certain modules are injective,
Pacific J. Math. 58, (1975), 43-53.

Brandal, W. [79]: Commutative Rings Whose Finitely Generated Modules Decompose,
Lecture Notes in Mathematics 723, Springer Verlag, 1979.

*
Brodskii, G. M. [83]: Dualities in modules and the AB condition, Russian Math.
Surv. 38, (1983), 185.

Bumby, R. T. [65]: Modules which are isomorphic to submodules of each other, Arch.
Math. 16, (1965), 184-185.

Burgess, W. D. and Raphael, R. [P]: On modules with the absolute direct sum
property, unpublished (1985).

Byrd, K. A. £72]: Rings whose quasi-injective modules are injective, Proc. Amer.
Math. Soc. 33, (1972), 235-240.

1579]: Right self-injective rings whose essential right ideals are two-sided,
Pacific J. Math. 82, (1979), 23—41.

Cartan, H. and Eilenburg, S. [56]: Homological Algebra, Princeton Univ. Press, 1956.



110
Chambless, L. [81]: Coprimary decomposition, N-dimension and divisibility:
Application to artinian modules, Comm. Algebra 9, (1981), 1131-1146.

Chase, U. S. [60]: Direct product of modules, Trans. Amer. Math. Soc. 97, (1960),
457473.

Chatters, A. W. and Hajaranavis, C. R. [77]: Rings in which every complement right
ideal is a direct summand, Quart. J. Math. Oxford 28, (1977), 61-80.

Chatters, A. W. and Khuri, S. M. [80]: Endomorphism rings of modules over
non-singular CS rings, J. London Math. Soc. 21, (1980), 434—444.

Crawley, P. and Dilworth, R. P. [73]: Algebraic Theory of Lattices, Prentice-Hall,
1973.

Crawley, P. and Jonsson, B. [64]: Refinements for infinite direct decompositions of
algebraic systems, Pacific J. Math. 14, (1964), 797-855.

Cunningham, R. S. and Rutter, E. A. Jr. [74]: Perfect modules, Math. Z. 140, (1974),
105-110.

Diximer, J. [81]: Von Neumann Algebras, North Holland, 1981.

Eckmann, B. and Schopf, A. [53]: Uber injective Moduln, Arch. Math. 4, (1953),
75-78.

Faith, C. [73a]: When are proper cyclics injective? Pacific J. Math. 45, (1973),
97-112.

[73b]: Algebra: Rings, Modules and Catagories I, Springer Verlag, 1973.
[76a]: Algebra II, Ring Theory, Springer Verlag, 1976.

[76b]: On hereditary rings and Boyle’s conjecture, Arch. Math. 27, (1976),
113-119.

85]: The maximal regular ideal of self-injective and continuous rings splits
off, Arch. Math. 44, (1985), 511-521.

Faith, C. and Utumi, Y. [64]: Quasi-injective modules and their endomorphism rings,
Arch. Math 15, (1964), 166-174.

Faith, C. and Walker, E. A. [67]: Direct sum representation of injective modules, J.
Algebra 5, (1967), 203-221.

Faticoni, T. G. [83]: On quasi—projective covers, Trans. Amer. Math. Soc. 278, (1983),
101-113.

Feigelstock, S. and Raphael, R. [85]: A problem of relative projectivity for abelian
groups, Canad. Math. Bull. 29, (1986), 114-122.

[86]: Some aspects of relative projectivity, Comm. Algebra 13, (1986),
1187-1212.

Fieldhouse, D. [84]: Epis and monos which must be isos, Internat. J. Math. & Math.
Sci. 7, (1984), 507-512.



111

Fleury, P. [74a): A note on dualizing Goldie dimension, Canad. Math. Bull, 17,
(1974), 511-517.

[74b]: Hollow modules and local endomorphism rings, Pacific J. Math. 53,

(1974), 379-385.

[77]: On local QF-rings, Aequat. Math. 16, (1977), 173-179.

Fuchs, L. [69]: On quasi-injective modules, Annali Scoula Normal Sup. Pisa 23,
(1969), 541-546.

[72]: The cancellation property for modules, in Lecture Notes Math. 246,
Springer Verlag, 1972, 193-212.

Fuchs, L., Kertesz, A. and Szele, T. [53]: Abelian groups in which every serving
subgroup is a direct summand, Publ. Math. Debrecen 3, (1953), 95-105.

Fuller, K. R. [69]: On direct representations of quasi-injectives and quasi—projectives,
Arch. Math. 20, (1969), 495-502.

Fuller, K. R. and Hill, D. A. [70]: On quasi-projective modules via relative
projectivity, Arch. Math 21, (1970), 369-373.

Generalov, A. I. [83]: The w—cohigh purity in a category of modules, Math. Notes 33,
(1983), 402—408.

Gerasimov, V. A. [82]: Localizations in associative rings, Sib. Math. J. 23, (1982),
788-804.

Gerasimov, V. N. and Sakhaev, I. 1. [84]: A counter—example to two hypotheses on
projective and flat modules, Sibirskii Mat. J. 25, (1984), 31-35.

Goel, V. K., Jain, S. K. and Singh, S. [75]: Rings whose cyclic modules are injective
or projective, Proc. Amer. Math. Soc. 53, (1975), 16-18.

Goel, V. K. and Jain, S. K. [76]: Semiperfect rings with quasi—projective left ideals,
Math. J. Okayama Univ. 19, (1976), 39—43.

—— [78]: m—injective modules and rings whose cyclic modules are m-injective,
Comm. Algebra 6, (1978), 59-73.

Golan, J. S. [70]: Characterization of rings using quasi-projective modules, Israel J.
Math. 8, (1970), 34-38.

[71a): Characterization of rings using quasi—projective modules (II), Proc.
Amer. Math. Soc. 2, (1971), 237-343.

[71b]: Quasi—perfect modules, Quart. J. Math. Oxford 22, (1971), 173-182.

Goodearl, K. R. [76]: Direct sum properties of quasi—injective modules, Bull. Amer.
Math. Soc. 82,7(1976), 108-110.

[79]: Vov Neumann regular rings, Pitman, 1979.

[82a]: Notes on Real and Complex C*—Algebras, Shira Publ. Ltd., 1982.



112
[82b]: Directly finite aleph-nought—continuous regular rings, Pacific J. Math.
100, (1982), 105-122.

Goodearl, K. R. and Boyle, A. K. [76]: Dimension Theory for nonsingular injective
modules, Memoirs Amer. Math. Soc. 177, (1976).

Goodearl, K. R., Handelman, D. E. and Lawrence, J. W. [80]: Affine representations

*
of Grothendieck groups and applications to Rickart C -algebras and
R o-continuous regular rings, Memoirs Amer. Math. Soc. 234, (1980).

Grzeszczuk, P. and Puczylowski, A. R. [84]: On Goldie and dual Goldie dimension, J.
Pure Applied Algebra 31, (1984), 47-54.

Gupta, A. K. and Varadarajan, K. [80]: Modules over endomorphism rings, Comm.
Algebra 8, (1980), 1291-1333.

Guralnik, R. M. [86]: Power cancellation of modules, Pacific J. Math. 124, (1986),
131-144.

Haack, J. K. [82]: The duals of the Camillo-Zelmanowitz formulas for Goldie
dimension, Canad. Math. Bull. 25, (1982), 325-334.

Hafner, I. [74]: The regular ring and the maximal ring of quotients of a finite Baer
*—ring, Michigan Math. J. 21, (1974), 153-160.

Hall, P. [37]: Complemented groups, J. London Math. Soc. 12, (1937), 201-204.

Halperin, I. [38]: On the transitivity of perspectivity in continuous geometries, Trans.
Amer. Math. Soc. 44, (1938), 537-562.

*
Handelman, D. [79]: Finite Rickart C -algebras and their properties, Studies in
Analysis, Adv. Math. Suppl. Studies 4, (1979), 171-196.

Handelman, D. E. and Lawrence, J. W. [78]: Lower K-theory, regular rings and
operator algebras — a survey, in Lecture Notes in Math. 734, Springer Verlag,
1978, 158-173.

Hanna, A. and Shamsuddin, A. [83]: On the structure of certain types of abelian
groups, Arch. Math. 40, (1983), 495-502.

Harada, M. [75]: On the exchange property of a direct sum of indecomposable
modules, Osaka J. Math. 12, (1975), 719-736.

[77}: Small submodules in a projective module and semi—T-nilpotent sets,
Osaka J. Math. 14, (1977), 355-364.

[78]: A note on hollow modules, Rev. Union Math. Argentina 28, (1978),
186-194.

[78b]: A note on hollow modules, Rev. Un. Mat. Argentina 28, (1978),
186-194.

[78b]: On small homomorphism, Osaka J. Math. 15, (1978), 365-370.



113

[78c]: On the small hulls of a commutative ring, Osaka J. Math. 15, (1978),
679-682.

[79]: Non-small modules and non—cosmall modules, in Ring Theory, Lecture
Notes in Pure and Applied Math. 51, Marcel Dekker, 1979.

__[80]: On lifting property on direct sums of hollow modules, Osaka J. Math.
T 1T, (1980), 783-791.

[82a): On modules with lifting properties, Osaka J. Math. 19, (1982),
189-201.

[82b]: On modules with extending property, Osaka J. Math. 19, (1982),
203-215.

[82c]: Uniserial rings and lifting properties, Osaka J. Math. 19, (1982),
217-229.

[83a): Factor Categories with Applications to Direct Decomposition of
" Modules, Marcel Dekker, 1983.

[83b]: On maxi—quasiprojective modules, J. Austral. Math. Soc. 35, (1983),
357-368.

Harada, M. and Ishii, T. [72]: On endomorphism rings of noetherian quasi-injective
modules. Osaka J. Math. 9, (1972), 217-223.

[75]: On perfect rings and the exchange property, Osaka J. Math. 12, (1975),
T 483-491.

Harada, M. and Oshiro, K. [81]: On extending property of direct sums of uniform
modules, Osaka J. Math. 18, (1981), 767-785.

Hausen, J. [79]: Groups whose normal subgroups have minimal supplements, Arch.
Math. 32, (1979), 213-222.

[82]: Supplemented modules over Dedekind domains, Pacific J. Math. 100,

¢ 82 387-402.

Hausen, J. and Johnson, J. A. [82]: On supplements in modules, Comment. Math.
Univ. St. Paul. 31, (1982), 29-31.

[83]: A characterization of two classes of Dedekind domains by properties of
" their modules, Publ. Math. 30, (1983), 53-55.

83b]: A new characterization of perfect and semiperfect rings, Bull. Cal.
Math. Soc. 75, (1983), 57-58.

Herrmann, P. [84]: Self-projective modules over valuation rings, Arch. Math. 43,
(1984), 332-339.

[84b]: Projective properties of modules, Algebra Berichte 47, (1984),
Universitdt Minchen.

Hein, J. [79]: Almost artinian modules, Math. Scand. 45, (1979), 198-204.



114
Hermandez, J. L. G. and Pardo, J. L. G. [87]: On endomorphism rings of
quasiprojective modules, Math. Z. 196 (1987), 87-108.

Hermandez, J. L. G., Pardo, J. L. G. and Hernandez, M. J. [86]: Semiperfect modules
relative to a torsion theory, J. Pure Applied Math. 43, (1986), 145-172.

Hill, D. A. [73]: Semi—perfect q-rings, Math. Ann. 200, (1973), 113-121.

[83]: Quasi—projective modules over hereditary noetherian prime rings, Osaka
J. Math. 20, (1983), 767-777.

Holland, S. S. [70]: The current interest in orthomodular lattices, in Trends in Lattice
Theory, Van Nostrand, 1970.

Tkeyama, T. [81]: Four—fold torison theories and rings of fractions, Comm. Algebra 9,
(1981), 1027-1037.

Inoue, T. [83]: Sum of hollow modules, Osaka J. Math. 20, (1983), 331-336.

Ishii, T. [75]: On locally direct summands of modules, Osaka J. Math. 12, (1975),
473-482.

Ivanov, G. [72]: Non-local rings whose ideals are all quasi-injective, Bull. Austral.
Math. Soc. 6, (1972), 45-52.

Ivanov, A. V. [78]: A problem on abelian groups, Math. USSR Sbornik 34, (1978),
461-474.

Iwamura, T. [44]: On continuous geometries I, Japan. J. Math. 19, (1944), 57-71.

Jain, S. K. [76]: Ring theory, Proc. Ohio Univ. Conference, May 1976, Lecture Notes
in Pure & App. Math. 25, Marcel Dekker, 1977.

Jain, S. K., Lopez—Permouth, S. R. and Rizvi, S. T. [P1]: Continuous rings with
ACC on essentials are artinian.

[P2]: A characterization of uniserial rings via continuous modules.

Jain, S. K., Mohamed, S. and Singh, S. [69]: Rings in which every right ideal is
quasi-injective, Pacific J. Math. 31, (1969), 73-79.

Jain, S. K. and Mohamed, S. [78]: Rings whose cyclic modules are continuous, J.
Indian Math. Soc. 42, (1978), 197-202.

Jain, S. K. and Miiller B. J. [81]: Semiperfect modules whose proper cyclic modules
are continuous, Arch. Math. 37, (1981), 140-143.

Jain, S. K. and Saleh, H. H. [87a]: Rings whose (proper) cyclic modules have cyclic
m—injective hulls, Arch. Math. 48, (1987), 109-115.

— [87b]: Rings with finitely generated injective (quasi-injective) hulls of cyclic
modules, Comm. Algebra 15, (1987), 1679-1687.

Jain, S. K. and Singh, S. [75]: Rings with quasi—projective left ideals, Pacific J. Math.
60, (1975), 169-181.



115
Jain, S. K., Singh, S. and Symonds, G. [76]: Rings whose proper cyclic modules are
quasi—injective, Pacific J. Math. 67, (1976), 461472.
Jans, J. P. [59]: Projective injective modules, Pacific J. Math. 9, (1959), 1103-1108.

Jansen, W. G. [78]: Fsp rings and modules, and local modules, Comm. Algebra 6,
(1978), 617—637.

Jeremy, L. [71]: Sur les modules et anneaux quasi—continus, C. R. Acad. Sci. Paris
273, (1971), 80-83.

[74]: Modules et anneaux quasi—continus, Canad. Math. Bull. 17, (1974),
217-228.

Johnson, R. E. and Wong, E. T. [61]: Quasi-injective modules and irreducible rings,
J. London Math. Soc. 36, (1961), 260—268.

Kalmbach, G. [83]: Orthomodular lattices, Academic Press , 1983.

Kamal, M. A. [86]: Modules in which complements are summands, Ph.D. thesis,
McMaser University, (1986).

Kamal, M. A. and Miiller, B. J. [88a]: Extending modules over commutative domains,
Osaka J. Math. 25, (1988), 531-538.

— [88b]: The structure of extending modules over noetherian rings, Osaka J.
Math. 25, (1988), 539-551.

[88c]: Torsion free extending modules, Osaka J. Math. 25, (1988).
Kaplansky, I. [51]: Projections in Banach algebras, Ann. Math. 53, (1951), 235-249.

— [52]): Modules over Dedekind rings and valuation rings, Trans. Amer. Math.
Soc. 72, (1952), 327-340.

[55]: Any orthocomplemented complete modular lattice is a continuous
geometry, Ann. Math. 61, (1955), 524-541.

[58]: Projective modules, Ann. Math. 68, (1958), 372-377.
[74]: Commutative Rings, University of Chicago Press, 1974.

Kasch, F. [79]: A decomposition theorem for strongly supplemented and d—continuous
modules, McMaster Univ. Math. Reports 105, (1979), 1-10.

Kasch, F. and Mares, E. [66]: Eine Kennzeichnung semi-—perfekter Moduln, Nagoya
Math. J. 27, (1966), 525-529.

Ketkar, R. D. and Vanaja, N. [81a]: A note on FR—perfect modules, Pacific J. Math.
96, (1981), 141-152.

81b]: R-projective modules over a semiperfect ring, Canad. Math. Bull. 24,

[
(1981), 365-367.

Koehler, A. [70a): Quasi-projective covers and direct sums, Proc. Amer. Math. Soc.
24, (1970), 655-658.



116
[70b]: Rings for which every cyclic module is quasi—projective, Math. Ann.
189, (1970), 311-316.

Quasi-projective and quasi-injective modules, Pacific J. Math 3,

[71]:
T (1971), 713-820.

[74]: Rings with quasi-injective cyclic modules, Quart. J. Math. Oxford 25,

T (1974), 51-55.

Leonard, W. W. [66]: Small modules, Proc. Amer. Math. Soc. 17, (1966), 527-531.
Li, M. S. and Zelmanowitz, J. M. [P]: On the generalizations of injectivity.
Mares, E. A. [63]: Semiperfect modules, Math Z. 82, (1963), 347-360.

Matlis, E. [58]: Injective modules over noetherian rings, Pacific J. Math. 8, (1958),
511—52

[73]: 1-dimensional Cohen—Macaulay Rings, Lecture Notes in Mathematics
327, Springer Verlag, 1973.

Michler, G. O. and Villamayor, O. E. [73]: On rings whose simple modules are
injective, J. Algebra 25, (1973), 185-201.

Ming, R. Yue Chi [85]: On von Neumann regular rings, XIII, Ann. Univ. Ferrara Sc.
Mat. 31, (1985), 49-61.

Miyashita, Y. [65]: On quasi-injective modules, J. Fac. Sci. Hokkaido Univ. 18,
(1965), 158-187.

[66]: Quasi—projective modules, perfect modules and a theorem for modular
Tattices, J. Fac. Sci. Hokkaido Univ. 19, (1966), 86-110.

Mohamed, S. [70a]: q-rings with chain conditions, J. London Math. Soc. 2, (1970),
455—46

[70b]: Semilocal g—rings, Indian J. Pure and App. Math. 1, (1970), 419-424.

[70c]: Rings whose homomorphic images are q-rings, Pacific J. Math 35,

(1970), 727-735.
[75]: On PCI-rings, J. Univ. Kuwait (Sci). 2, (1975), 21-23.
[82]: Rings with dual continuous right ideals, J. Austral. Math. Soc. 32,

T (1982), 287-204.

Mohamed, S. and Abdul-Karim, F. H. [84]: Semi-dual continuous abelian groups, J.
Univ. Kuwait (Sci.) 11, (1984), 23-27.

Mohamed, S. and Bouhy, T. [77]: Continuous modules, Arabian J. Sci. Eng. 2, (1977),
107-122.

Mohamed, S. and Miller, B. J. [79]: Decomposition of dual continuous modules,
Lecture Notes in Math. 700, Springer—Verlag, 1979, 87-94.

[81]: Direct sums of dual continuous modules, Math. Z. 178, (1981), 225-232.



117
88a): Dual continuous modules over commutative noetherian rings, Comm.
" Algebra 16, (1988), 1191-1207.

[88b]: Continuous modules have the exchange property, Proc. Perth Conf.
Abelian Groups, Contemporary Math. (1988).

Mohamed, S., Miller, B. J. and Singh, S. [85]: Quasi—dual continuous modules, J.
Austral. Math. Soc. 39, (1985), 287-299.

Mohamed, S. and Singh, S. [77]: Generalizations of decomposition theorems known
over perfect rings, J. Austral. Math. Soc. 24, (1977), 496-510.

Mohammed, A. and Sandomierski, F. L. [P]: Complements in projective modules.

Monk, G. S. [72]: A characterization of exchange rings, Proc. Amer. Math. Soc. 35,
(1972), 349-353.

Mucke, C. [88]: Zerlegungseigenschaften von stetigen und quasi-stetigen Moduln,
Algebra Berichte 57, %1988), Universitat Miinchen.

Miiller, B. J. [68]: Dominant dimension of semi—primary rings, J. Reine Angew. Math.
232, (1968), 173-179.

[70]: On semiperfect rings, Illinois J. Math. 14, (1970), 464—467.

[81]: Continuous geometries, continuous regular rings, and continuous
modules, Proc. Conference Algebra & Geometry, Kuwait (1981), 49-52.

Miiller, B. J. and Rizvi, S. T. [82a]: On the decomposition of continuous modules,
Canad. Math. Bull. 25, (1982), 296-301.

[82b]: On the existence of continuous hulls, Comm. Algebra 10, (1982),
T 1819-1838.

83]: On injective and quasi—continuous modules, J. Pure Applied Algebra
28, (1983), 197-210.

[84]: Direct sums of indecomposable modules, Osaka J. Math. 21, (1984),
T 365-374.

Murray, F. J. and von Neumann, J. [36]: On rings of operators, Ann. Math. 37,
1936), 116-229.

Nakahara, S. [83]: On a generalization of semiperfect modules, Osaka J. Math. 20,
(1983), 43-50.

Nicholson, W. K. [75]: On semiperfect modules, Canad. J. Math. 18, (1975), 77-80.
[76]: Semiregular modules and rings, Canad. J. Math. 28, (1976), 1105-1120.

[77]: Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229,

(19 77 269-278.

Oberst, U. und Schneider, H. J. [71]: Die Struktur von projektiven Moduln, Inv.
Math. 13, (1971), 295-304.



118
Okado, M. [84]: On the decomposition of extending modules, Math. Japonica 29,
(1984), 939-941.

Okado, M. and Oshiro, K. [84]: Remarks on the lifting property of simple modules,
Osaka J. Mat. 21, (1984), 375-385.

Oshiro, K. [80]: An example of a ring whose projective modules have the exchange
property, Osaka J. Math. 17, (1980), 415-420.

83a]: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math.
20, (1983), 337-372.

83b]: Continuous modules and quasi—continuous modules, Osaka J. Math.
20, (1983), 681-694.

[83c]: Projective modules over Von Neumann regular rings have the finite
exchange property, Osaka J. Math. 20, (1983), 695-699.

[84a): Lifting modules, extending modules and their applications to
" QF-rings, Hokkaido Math. J. 13, (1984), 310-338.

[84b]: Lifting modules, extending modules and their applications to
generalized uniserial rings, Hokkaido Math. J. 13, (1984), 339-346.

Osofsky, B. L. [64]: Rings all whose finitely generated modules are injective, Pacific J.
Math. 14, (1964), 646—650.

[68a]: Non—cyclic injective modules, Proc. Amer. Math. Soc. 19, (168),
T 1383-1384.

[68b]): Non—commutative rings whose cyclic modules have cyclic injective
" hulls, Pacific J. Math. 25, (1968), 331-340.

[68c]: Endomorphism rings of quasi—injective modules, Canad. J. Math. 20,

(1968), 895-903.

Papp, Z. [59]: On algebraically closed modules, Pub. Math. Debrecen 6, (1959),
311-327.

Pyle, E S. [75): The regular ring and the maximal ring of quotients of a finite Baer
*_ring, Trans. Amer. Math. Soc. 203, (1975), 201-213.

Rangaswamy, K. M. [77]: Modules with finite spanning dimension, Canad. Math. Bull.
20, (1977), 255-262.

Rangaswamy, K. M. and Vanaja, N. [72]: Quasi-projectives in abelian and modules
categories, Pacific J. Math. 43, (1972), 221-238.

Rayar, M. [71]: Small and co—small modules, Ph.D. thesis, Indiana Univ., (1971).
[82]: On small and cosmall modules, Acta Math. Acad. Sci. Hungar. 39,

(1982), 389-392.

Reda, F. A. [78]: On continuous and dual continuous modules, M.Sc. thesis, Univ.
Kuwait, (1978).



119

Rizvi, S. T. [80]: Contributions to the theory of continuous modules, Ph.D. thesis,
McMaster University, (1980).

[88]: Commutative rings for which every continuous module is
quasi-injective, Arch. Math. 50, (1988), 435—442.

Robert, E. de [69]: Projectifs et injectifs relatifs, C. R. Acad. Sci. Paris 286, (1969), A
361-364.

*
Roos, J. E. [68]: Sur l’anneau maximal de fractions des AW -—algebras et des anneaux
de Baer, C. R. Acad. Sci. Paris 266, (1968), A 120-133.

Rudlof, P. [89]: Komplementierte Moduln iiber Noetherschen Ringen, Ph.D. thesis,
Universitit Miinchen, (1989).

Sakhaev, I. I. [85]: Projectivity of finitely generated flat modules over semilocal rings,
Math. Notes 37, (1985), 85-90.

Sandomierski, F. L. [64]: Relative injectivity and projectivity, Ph.D. thesis, Penn.
State. Univ., (1964).

— [69]: On semiperfect and perfect rings, Proc. Amer. Math. Soc., 21, (1969),
205-207.

Sarath, B. and Varadarajan, K. [74]: Injectivity of direct sums, Comm. Algebra 1,
(1974), 517-530.

[79]: Dual Goldie dimension II, Comm. Algebra 7, (1979), 1885-1899.

Satyanarayana, B. [85]: On modules with finite spanning dimension, Proc. Japan.
Acad. 61, (1985), 23-25.

Sharpe, W. D. and Vamos, P. [72]: Injective Modules, Cambridge Univ. Press, 1972.

Singh, S. [67]: On pseudo-injective modules and self-pseudo—injective rings, J. Math.
Sci. India 2, (1967), 23-31.

0]: Dual continuous modules over Dedekind domains, J. Univ. Kuwait

8
(sa.ﬁ 7, (1980), 1-9.

84]: Semi—dual continuous modules over Dedekind domains, J. Univ. Kuwait

(Sci) 11, (1984), 33-39.

Singh, S. and Mehran, H. A. [P]: A note on weak q-rings.
Stenstrom, B. [75]: Rings of Quotients, Springer Verlag, 1975.

Stock, J. [86]: On rings whose projective modules have the exchange property, J.
Algebra 103, (1986), 437—453.

Suzuki, Y. [68]: On automorphisms of an injective module, Proc. Japan. Acad. 44,
(1968), 120-124.

Szeto, G. [77]: The structure of semiperfect rings, Comm. Algebra 5, (1977), 219-229.



120

Swan, R. G. [62]: Vector bundles and projective modules, Trans. Amer. Math. Soc.
105, (1962), 264-277.

Takeuchi, T. [76]: On confinite dimensional modules, Hokkaido Math. J. 5, (1973),
1-43.

Utumi, Y. [59]: On a theorem on modular lattices, Proc. Japan. Acad. 35, (1959),
16-21.

L On continuous regular rings and semisimple self-injective rings, Canad.
T J Mat , (1960), 597—605.

[61]): On continuous regular rings, Canad. Math. Bull. 4, (1961), 63—69.

65]: On continuous rings and self-injective rings, Trans. Amer. Math. Soc.
118, (1965), 158-173.

[66]: On the continuity and self injectivity of a complete regular ring,
T Canad. J. Math. 18, (1966) 404—412.

[67]: Self-injective rings, J. Algebra 6, (1967), 56-64.

Varadarajan, K. [79a): Modules with supplements, Pacific J. Math. 82, (1979),
559-564.

[79b]: Dual Goldie dimension, Comm. Algebra 7, (1979), 565-610.
[80]: Study of certain pre-radicals, Comm. Algebra 8, (1980), 185-209.

Von Neumann, J. [32]: Mathematische Grundlagen der Quantenmechanik, Springer
Verlag, 1932.

[36a]: Continuous Geometry, Proc. Nat. Acad. Sci. 22, (1936), 92-100.

[36b]: Examples of continuous geometries, Proc. Nat. Acad. Sci. 22, (1936),
101-108.

[36¢]: On regular rings, Proc. Nat. Acad. Sci. 22, (1936), 707-713.
[60]: Continuous Geometries, Princeton Univ. Press, 1960.

Wani, P. R. [86]: Study of the S-module Hom (M, pN) where S = EndpM, Ph.D.
thesis, Univ. Calgary, (1986).

Ware, R. [71]: Endomorphism rings of projective modules, Trans. Amer. Math. Soc.
155, (1971) 233-256.

Ware, R. and Zelmanowitz, Z. [70]: The Jacobson Radical of the endomorphism ring
of a projective module, Proc. Amer. Math. Soc. 26, (1970), 15-20.

Warfield, R. B. [69a]: A Krull-Schmidt theorem for infinite sums of modules, Proc.
Amer. Math. Soc. 22, (1969), 460—465.

[69b]: Decompositions of injective modules, Pacific J. Math. 31, (1969),
263-276.



121

[72]: Exchange rings and decompositions of modules, Math. Ann. 199,

(19 72 31-36.

Wisbauer, R. [80]: F-semiperfekte und perfekte Moduln in o[M], Math. Z. 173,
(1980), 229-234.

Wong, E. T. and Johnson, R. E. [59]: Self-injective rings, Canad. Math. Bull. 2,
(1959), 167-173.

Wu, L. E. T. and Jans, J. P. [67]: On quasi-projectives, Illinois J. Math. 11, (1967),
439448.

Yamagata, K. [74a]: The exchange property and direct sums of indecomposable
injective modules, Pacific J. Math. 55, (1974), 301-317.

74b]: On projective modules with the exchange property, Sci. Rep. Tokyo
Kyoiku Daigaku Sec. A, (1974), 149-158.

Zariski, O. and Samuel P. [60]: Commutative Algebra II, Van Nostrand, 1960.

Zimmermann-Huisgen, B. and Zimmermann, W. [84]: Classes of modules with the
exchange property, J. Algebra 88, (1984), 416-434.

Zollner, A. [86]: On modules that complement direct summands, Osaka J. Math. 23,
(1986), 457-459.

Zoschinger, H. [74a]: Komplementierte Moduln iber Dedekindringen, J. Algebra 29,
(1974), 42-56.

[74b]: Komplemente als direkte Summanden, Arch. Math. 25, (1974),
241-253.

[80]: Koatomare Moduln, Math. Z. 170, (1980), 221-232.

[81]: Projektive Moduln mit endlich erzeugten Radikalfaktormoduln, Math.
" Ann. 255, (1981), 199-206.

[82a): Komplemente als direkte Summanden II, Arch. Math. 38, (1982),
T 324-334.

[82b]: Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad. Wiss.,

(19 82 43-70.

[83]: Linear—kompakte Moduln iiber noetherschen Ringen, Arch. Math. 41,

(1983), 121-130.

[86]: Komplemente als direkte Summanden III, Arch. Math. 46, (1986),
T 125-132.



NOTATION

ring ring with identity

module unitary right module
summand direct summand

1sTn locally—semi-transfinitely—nilpotent
N {1,2,3,...}

I ring of integers

Q field of rational numbers
R field of real numbers

(} field of complete numbers
ﬂp ring of p—adic integers
Cg cyclic group of order "
C; Priifer group

C set inclusion
< submodule
< proper submodule

ge essential submodule

<< small submodule

® summand

—_—> homomorphism

>—> monomorphism, embedding
—_—>> epimorphism

>—>> isomorphism

S=End M ring of endomorphisms of M
A {fes: M <M}

v {feS:kerf<<M}
RadM Jacobson radical of M
J(R)orJ Jacobson radical of a ring R
E(M) injective hull of M

x° annihilator of X

.H Mi direct product

iel

o M. direct sum

ier !

M(K) ® M, forKclI

ieK



M(I - {i}), fori el

direct sum of n copies of X, for a cardinal n
X(n), forn=N

the orthogonal class of %

implies

equivalent

end of proof
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